
/AD—A0’42 690 NAVAl. ELECTRONIC SYSTEMS COMMAND WASH INGTON 0 C F/a 12/iAN INTROOUCTIOi TO THE THEORY oc LINEAR SYSTEMS, (U)
1977 R FRATILA

UNCLASSIFZEO NI.

~ 3 l  ______________________A~I42B~~

Ui BflI
U________ 

__ _ _a______ 
__ _• 1



L

~~iIIii~ — - ~~~~~~~~~~~ -~~~~
---



/

An Introd uctio n to /
the Theor y of

- 

I )
L~’.T~ ~~~~~ I

US. Naval Electronic Systems Command, Washington, D.C.

For sale by the Superintendent of Documents , U.S. Government Print ing Office
Washington , D.C. 20402 - Price $1.60

F Stock No. 008-05046)143-7

I

1 —‘/ 1  2 / C 2  

~~~~~~— ~~~~~~~~~~~~~~~~~~ ~4



Whoever undertakes to set himself up as jud ge in
the f ield of Truth and Knowledge is shipwrecked by

the laughter of the gods.
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Preface

Until the past decade the term “system1 as used in the many disciplines of
- . science and engineering conveyed a variety of meaning. Since the early 1960’s

theorists have been folding these varied impre ssions into the single, formidable
• conceptual framework of linear system theory . The discussions of this volume

are intended to lend to this unification. Specifically, the intent is to draw on the
• conceptual ideas that are common to linear filters , linear time-invariant systems,

Markov chains and quantum theory and present , in a non-rigorous manner , their
respective similarities. ~~

- Chapter 1 deals wi~~ the fundamental concepts upon which the definition
of a system can be established. Such notions as ordere d pairs , oriented abstract

. objects , etc., serve as the basics of the definition. The system response is defined

- 
in terms of an input-output-state relationship which must satisfy certain con-
sistency conditions.

The system defmition of Chapter 1 is built upon in Chapters 2 , 3 and 4. In
Chapter 2 the conditions for consistency are re-cast in the form of demon-
strating the separation property inherent in the input-output-state relationship.

V
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Vi PREFACE

In Chapter 3 the state-space representation is formalized for linear differential
systems , and Chapter 4 highlights the canonical form of the state-space represen-
tation , i.e.

x = Ax + Ru

y = c~ + Du

In Chapter 5 solutions to the canonical equations are presented for a
variety of systems. A natural fall-out of the state-space formulation are the
theoretical concepts of controlabiity, observabiity and stability, which are
addressed in Chapter 6.

In the last two chapters the reader is reminded that the linear theory
developed thus far has limited application to real worl d problems , such as treat-
ing large complex systems. The objective of Chapter 7 is to introduce the idea of
an imprecisely defined (or probabilistic) system. The methods of extracting
signals from noise , both of which are treated as random processes , are discussed
as a means to augment the linear theory . Finally , Chapter 8, which deals with
quantized systems , ends this volume by highlighting the perturbation method for
treating state transition probabilities. It exemplifies the hi gh degree of difficulty
encountered in analyzing statistical systems.
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1
Fundamental Concepts
and Definitio ns

I .E  INTRODUCTION

Linear system theory is intended as a discipline to provide a unified conceptual
framework for system analysis. In establishing this framework we will introduce
such notions as abstract objects , their measurable attributes , and the mathemati -
cal relations between attributes. These concepts will serve as the primitives of
the theory , although they defy precise definition in unequivocal terms. Our goal
will be to identify a small part of the physical world we intuitively understand
and attempt to evolve a quantitative basis for analysis. The proof of this quanti-
tative understanding will be manifest in our ability to better describe the
behavior of linear differential systems.

We think of a system (in vague terms) as being a collection of things or
objects which somehow are united through interaction or interdependence. More
precisely, we define ’ a system to be a partially interconnected set of abstract

1. Afte i Zadeh and Desoer , Linear System Theory. McGraw-Hill , New York , 1963. pp. 1-65.
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2 AN INT R ODUCTION TO THE TH EORY OF LINEAR S Y STE MS

objects. which are called the system components. These components may be
oriented or nonoriented: they may be finite or infinite in number; and each of
them may be associated with a finite or infinite number of terminal variables. It
is not intended or expected at this time that the above definition be fully
comprehended by the reader. The terms used to define the system are them-
selves undefined. Rather , the intent here is to set the stage for the discussion to
follow. The remainder of the chapter will be devoted to clarifying and con-
cretizing the concept of a system , and some of its ramifications.

1.2 TIME FUNCTIONS

As a foundation for the sequel our initial goal is to establish the terms of
reference , particularly those addressing time dependent variables. Consider an
object (as yet undefined) which we will label CL and let u be a measurable
attribute of Cf .  u can be real or complex. Let it be understood that u is a time
function where time range s from — 00 to oe. Let Tbe a specific subset of time and
t an element within T. (Typically, T may be the semi-infinite interval (t0,°°] ,
where t0 is a particular value o f t ;  or T may be a finite interval Ito , t 1] , etc.) The
time function u defined on the subset T Will be denote . simply as u or as
u[t 0, t j ] ,  where [t0, t t ] is the time segment T. On the other hand u(t) will
denote the value of u at time r. Thus , u is meant as t - ~ entire set of pairs
{(t ,u(t))} for each t in T. In the specific time segment [t o, t 11 the function
u [ t 0, t 1 J is the totality of pairs ((t, u(t)) } with t0 ~~ t ~ r 1. Figure 1.1 further
illustrates what is meant by u [t 0, t 1] and u(t) for real-valued variables.

In general the discussions to follow will involve the set or class of time
functions fu} more so than a single time function u. In the case u may be
regarded as a real or complex variable ranging over {u}. The range of u will be
denoted as R [UI ; it is the set of time functions to which u belongs. When u

U U

u(:0 11 J

— — —

Time r1 Time

Figure 1. 1 Notation for time functions.
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FUNDAMENTAL CONCEPTS AND DEFINITIONS 3

varies over R [u], the values of u for fixed t vary ove r a set which is the range of
the variable u(t). The range of u(t) will be denoted by R [ u (t) J . in general
R [u(t)I is independent of t . Figure 1 .2 further illustrates R [u(t)] and R [u] for
real-valued variables. The distinction between R [ u(t) ]  and R Eu ] is that the
former includes the set of real numbers over (_oo ,oo) , whereas the latter includes
a set of time functions.

The discussion for scalar time functions can readily be extended to include
vector (and matrix) functions. In bold face u(t) denotes an n-vector. The range
R” of u(t) is the space of n-tup les of real numbers whose values are assumed at
time t. (The range C” will be used to denote the set of ordered n -tup les where
the elements of u(t) are complex numbers.) We have

u(t) = (u 1 (t) , u2 (r) u~(t)) (1.1)

where u, (I = 1 n) are real or complex numbers and the parameter t identif ies
the values of the u at time t.

The vector function u is the tota lity of pairs {(t ,u(t)) } for each t in T.
For the specified time interval [t 0 ,t i ]  the vector u [t o , t ,] consists of the pairs
{(t , u(t)) }, where t0 ~ t s~ t 1. In the sequel we will generally denote the vector
function u [t 0, t 1] simply as u , i.e.,

I(141(to),u2(t o) un(t o)) )
u = u[t o,t 1] ~ ( )~ 

(1.2)

L(ui(t i),u2(t j ) u~(t 1))J

where t0 and t 1 are the parameters associated with the time segment T.

u(t) 
~‘t I t  

( ii 
Ut~~

,
~__~? 

RIuI

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

R[u(t)]

— 

U~~~~
,I I I I

’

t o I •I In Time

Figure 1.2 Notation for range of time functions.
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4 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

Typically , the vector u is a vector-value d time function which , (a) may
contain a finite number of delta functions of various orders over a finite interval ,
and (b) is piecewise continuous and has piecewise continuous derivatives of
finite orders on every finite interval over which it has no delta functions. Thus , it
will be assumed that R [u(t)I is R” and R [ul is the space of all vector-value d
time functions which are finitely differentiable over the time segments T.

1.3 OBJECTS , ATTRIBUTES AND TERMINAL RELATIONS

An object can be labeled as either physical ~P or abstract Cf . (Within these cate-
gories we can further classify the objects as either oriented or non-oriented.) By
a physical object it is usually meant a physical device which is associated with a
set of attributes u 1, u2, u3 where the relations between these attributes
necessarily characterize the object. In effect , an object is a set of variables with a
defined set of relations between them. Specifically, these variables are called the
terminal variables of object Cf ;  the relations between them are the terminal
relations. The characterization of Cf by its terminal relations can be written
symbolically as 

u0) = 0

(1.3)

( fm ( u 1 , u2 u~) = 0

where each Cf 1, / = 1,2 m, represents a relation between the variables u,, I =
1, 2 ,..., n.

If an object Cf is characterized by terminal relations of form (1 .3) and no
distinction is made as to whether the variables are inputs (causes) or outputs
(effects) then Cf is said to be nonoriented . On the other hand , if the variables are
clearly categorized as inputs and outputs (dependent and independent variables),
then Cf is said to be oriented.

In keeping with the idea of an oriented object we postulate as the input to
the k-tup le u (u j  , . . .u k) . The elements u 1 , u2,. .. are time functions varying

over the interval (t 0, t ,). Similarly , we have for the output of Cf the m-tup le
y~~( yj  ym) .

The range of u(t), which is independent of time , constitutes the input
space of the object. The range of the segmented time function u = u( z Ø. t 1) is
the input segment space. It is important to note that R [u ]  depends on the
parameters t~ and t 1 which vary over T. In essence , Cf is associated with a family
R [u I  generated by the parameters t0 and t 1. The same can be said for the range
of the output vector R [y] .

-. ~~~~~~~~~~ ~~~ —~~~ ---
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FUNDAMENTAL CONCEPTS AND DEFINITIONS 5

In princip le the relations between the u, and y1 can be established by
lett ing u vary over its allowable range R I u j  and observing y. The input-outpu t
relations of (1.3) can be expresse d as

(f l (u l , u2 , . . .uk ,y I , y2 , . .  .y,,~) = 0

(1.4 )

Cf”° (U1,U2,...Uk,yl,y2,.. - Ym) = 0

or

- 
. (u ,y ) 0

y = Cf (u) (1.5)

To illustrate equation (1.5) let the physical object ~? be an electrical
capacitor. A simple experiment is devised in which the voltage v across the
capacitor is being measured . Let v be designated as the output and the current i
through the capacitor as the input. We have

dt

where Cis a constant. This relation can readily be put in the form of( l .5)  as

~‘(i ,v) = 0

Note that in the above equations v is not uniquely defined as a function of i. We
can determine v to within an added constant (constant of integration). Also , the
roles of i and v can be interchange d with no change in formulation or results.

1.4 ORIENTED MODEL

An abstract object Cf that admits to (1 .5) is an abstract oriented model of ~P. it
can be represented as (f(~P). Similarly, ‘Y is a physical realization of Cf and can be
represented as ~P ( Cf ) .

An abstract oriented model can be formulated to represent every physical
object. Howeve r , the converse is not always true , i.e., it is possible to generate
abstract oriented and nonoriented models for which physical realizations are not
possible. (Clearly, an abstract object whose term inal variables , say v1 and v2 , are
represented by a ,~lation of the form v1 Jv2 , where j =  ~~~~~~~~ cannot be
realized.) On the other hand if Cf is physicall y realizable , it can be realized in a
variety of physical forms , ~ i’, - . .. Thus Cf( P1), Cf ( ~P2). ... all represent the

.
;~

—=. 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ :~~~~~
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6 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

same abstract object Cf . To illustrate this poin t , consider the straight line motion
of a mass m accelerating along the OX axis. Let ~P represent the physical mass.
The variable attributes of ~P are chosen as the force F applied along the axis, the
position x , velocity i and acceleration x. Our experiment is to vary F and
observe 31. For the abstract oriented model of ~P, i.e., Cf ( ~P) , we designate the
input-output as u( =F) and y(~~). Thus, the input-output relationship is

= Cf (F ,31) = 0

where

F ntx

The corresponding relation for ~9(Cf ) is

fPW ) = ~p(u ,y) = 0

where

u = my

If we start with C?, where u = my, then ~P is a physical realization of Cf with x and
F identified as u and y,  respectively. Similarly, Cf can be realized by a resistor

- 
- . where the current through the resistor is identified with y and the voltage across

the resistor is identified with u. Other similar physical examples of Cf can easily
be identified pointing out the fact that the abstract model U can be realized in a
variety of physical forms fP.

To solidify the analytic meaning of an oriented abstract object consider
the observation interval [t o, t 1]. Let the vector pair (u ,y), where u u [t0 ,t i]
and y = y [t 0, t 1 J ,  be an ordered pair of time functions defined on [to ,t 1J .  Let
the set ((u ,y)) be the family of such pairs generated by varying t0 and t1 over
the time segment T, with t 1 ~ t0. Accordingly, an oriented abstract object C? is
defined 1 as a family of sets of ordered pairs of time functions {{(ui ,y)}}. The
generic pair is (u ,y). u is the input segment and y is the output segment. (u,y) is
the input-output pair belonging to C? if (u ,y) is an element of the set {(u,y)}
for some [t 0, t 1) in T. Thus , an oriented abstract object can be identified with
the totality of input-output pairs belonging to U.

To ensure that the family of sets {{(u ,y)}} is defined in a consistent
manner , we require that all members of f {(u ,y )} } satisfy the consistency con-

I .  op. cit.
Note : Notationally { } denotes a set (or family). The double ft }} denotes a family of sets.

~~~~~~~~~~ -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——-~ —~~~~~~--- —4
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FUNDAMENTAL CONCEPTS AND DEFINITIONS 7

dition . The condition for consistency is that if (u [to ,t 1 ]  , y E  t0, t 1 I ) i s  an input-
output pair belonging to U, then any section of the pair within [t o, t 1 J also
belongs to U. Specifically, for any pair (u[ro ,r 1] ,y[r0 ,r 1 ]) where 10 ~~~ r0 ‘~~ r 1,
r0~~~r1 ~~t j , we require that u[ r o ,r 11 u[10, t j ]  andy[r 0 ,r 1] y [ t ~ ,r j ]  over
the interval [ro, r i ] .

The sets of all segments of u and y over (t O, t j ) ,  such that the pair (u ,y)
belongs to object U, are referred to as the input segment space R [uJ and output
segment space R [y] , respectively. It is implied that the set {(u ,y)) is a subset of
the product space R [u] X R [yJ . This relationship between {(u ,y )} and R [uj X
R [y] is illustrated in Figure 1.3. Axea ad and bb ’ represent R [ u ]  and R [y] ,
respectively. The area ABCD represents the product space created by R [uJ X
R [ y ]  . The object area represents f(u ,y)}.

As a simple example of an ordered input-output pair belonging to the
abstract object U consider the mass object of Section 1 .4. The dynamical
behavior of the mass m under the influence of an external force F is described
by the equation

d .F m ~~ x

y

((u.y)}

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~

Figure 1.3 Representation of an abstract object.

_ _ _ _ _ _ _ _ _ _ _ _ _



8 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

Designating the input and output , respectively , as u = F andy = x we have fr om
equation (1 .5)

Cf (u , y )  = 0
dy
dt

The generic input-output pair (u ,y) over the finite time interval (t ~~,t i)  is the
pair of time functions

(u (t) ~a + _Lf u(~)d~)

where to ~ 1 ~~ t~ and a is a real arbitra ry constant (of integration). Such pairs as
(l , t). (1 , 1 + t), (1, 2+ t) (t, 1+ t2/2), (1,2+ 12/2) represent a family of sets
of input-output pairs for the mass object. (For convenience the mass m was
normalized to unity.)

As another example of an oriented abstract object consider a simple feed-
back control system characterized by the dynamic relation

dy
-

~~~~ 

= ay + bu

where a and b are constants. Again , for convenience we will set both constants
equal to unity. Solving for y in terms of u , we have for (u ,y)  over (10 , t 1) .  where
tO ~ t ( t 1 and a is an arbitrary real constant ,

u(t),e~~
t_t 0)a +

importantly, we note that , in both examples cited , to each input segment
u [to, t 1J there corresponds a family of output segments {y[t o, t i ]  }. The arbi-

- 
.~:= trary constants a and a in the examp les play the respective role of parameters

generating the families.
In our definition of an object we have required that , for consistency , every

segment of an input-output pair belonging to C? also be an input-output pair
belonging to Cf . Clearly, there are segments of input-output pairs which are not
segments of other input-output pairs. For example , consider an object character-
ized by

y = u  t~~~t0, t0 <0

- 
, 

~~~~~~~~~~~~~~~~~ t~~~ , 0
dt dt

-
~~ ::.;-~ - 

~~~~~~~~ .‘~~~~~~~ - ‘ -~~~~ ~~~~~~~



FUNDAMENTAL CONCEPTS AND DEFINITIONS 9

For t ~ 0 input-output pairs such as (l ,3), (4 , 5), (6 , l )  where u and y are
constants , all satisfy the characterization relationship .Tt~ 

= ri . However , they are
not pairs defined on the interval t ~~ ‘ t~ , t0 <0 , where (u(t),u(t))  is the generic
form . It is for this reason we define C? as a family of sets of input-output pairs.

In the applications to follow it will be sufficient to restrict our attention
to objects characterized by a single set of input-output pairs defined over the
interval T. Such objects are said to be uniform . Specifically, an object C? is said
to be a uniform oriented object if every input-output pair (u [t 0, t~ I ,v [ 10, t i
belonging to Cf is a segment of an input-output pair (UT ,VT ) defined over T.
Thus a uniform oriented object can be characterized by a single set of pairs
f(ur ,yT)}. If , for example , T [0,00) then C? is characterized by the single set
of ordered pairs {(u[0 ,00), y [0 ,°°)) } defined over T. For convenience , and
unless otherwise stated in the sequel , we will assume that Cf is a uniform oriented

• object , and that T (_oo ,0o).

1.5 NOTION OF STATE

The abstract object has been define d as a relation, i.e., a set of ordere d pairs
(u ,y) rather than a function where for each u there corresponds a unique y. To a
given u there is associated a set of output y ’s. u and each y in the set comprise an
input-output pair belonging to U. Thus , we have departed from the conventional
definitions which identify C? within a function (or an operator) and associate a

• unique output for each input.
The set of distinct y ’s associated with a given input u is generated by the

different initial conditions unde r which u influences C? . (These different initial
conditions are equivalent to “initial states.”) One way of associating a unique y
with each u is to attach a distinguishing lable to each pair (u ,y). In the discus-
sion to follow this label , which we denote as x(t0), will be called the state of C?
at time t0. The state will span a (state) space , which we will denote as ‘I’, in such
a way that y will be uni quely determined by u and x(t0). The process of
attaching the state label is called parametrization of the space of input-output
pairs. Essentially , by establishing the state of C? at time t0 we separate the past
from the future. We provide that information about the past that is relevant to
determining the response of C? beginning at time t0.

1.6 STATE-INPUT-OUTPUT RELATIONS

There are many ways in which a state vector xQ0) can be associated with C?.
Therefore the definitions given below will be a set of qualifying conditions
which , if met , allow one to label the state of C? at time t0 as x(r 0).

~~~~~~ ‘~~~ - -~~~~~~~~~~~~~~~~~~
_

~L:~ ~i_~
_ ___ .

~ ~~~~~~~~~~~
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10 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

For discussion purposes conside r the semi-c losed interval (t o, tl and the
ordered pair (u(to, t ) ,  y(t o, tj ) ,  which is a segment of (ur ,yr )de fined over T.
Let C? be characterized over (t0, tJ by input-output relation (1.5), i.e., by

C?(u ,y) = 0

Y = (1(u)

(This is equivalent to saying Cf is characterized by the family of sets of ordered
pairs {{(u ,y)}}. Let x be a (vector) variable ranging over space ‘P. It is claimed t
that if the spaces of input-output pairs admit to a relation of the form

y( t0, t] F(x;u( t 0, tJ ) (1.6)

which satisfies the four mutual- and self-consistency conditions set forth below,
then (a) equation (1.6) qualifies as an input-output-state relation for C?, (b) space
‘I’ qualifies as the state-space for U, where elements of ‘P are the states , and (c)
the variable x0 = x(t0) qualifies as the state of C? at time to. Thus, if the cop -
sistency conditions as defined below are satisfied it can be said that U is com-
pletel y characterized by (1.6), where y(to, t I  is the response segment of C? to
input segment u(to, tJ starting in state x0 and (u(t o, t J , y( to ,t J )  is the input-
output pair associated with x0.

The conditions of mutual- and self-consistency which qualify (1.6) as the
input-output-state relation for Cf are defined 2 below.

1.7 CONDITION I , MUTUAL-CONSISTENCY

Every input-output pair for C? satisfies relation (1.6), and conversely. To elabo-
rate , if (u(t 0, t] , Y(t o, t J), or simply (u ,y ), satisfies (1.5) then the pair also
satisfies (1.6) since there exists an x (say x0) in ‘P such that

Y(to, tJ = F(xo;u(t o , t j )  (1.7)

Conversely, any pair (u ,y)satisf ying (1 .6) for some x in ‘P over (t 0, t J  is also an
input-output pair for C?. This condition must hold for all (t o, tJ in Tand for all
u in R [u ) . The purpose of the mutual-consistency condition is to ensure that
equations (1 .5) and (1 .6) both represent the same object.

- 
- 

We demonstrate the mutual-consistency condition by again considering the
mass object of Section 1.4. C? is characterized by

-; l op. cit.
2. op. cit.
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u (m l) (1.8)

The first part of the mutual-consistency condition is fulfilled in the sense that
(1.8) can be written as

C?(u,y) = 0

where

(u ,y) = (u(t),a +J t u(~)d~)

thereby satisfying (1.5). Further , the output y satisfies (1.6) since we can write ,
with proper choice of x ,

y(t) = x0 + u(~)d ~
Jj 0

= F~x0;u(t))

Conversely , consider the input-output state relation of the form

y(t) = a + f u(~)d~J t o

= F(a;u(t)) (1.9)

With proper choice of x (=a) the pair (u(t),y(t)) characteri zing C? satisfies (1.6).
By direct substitution of (1.9) into (1.8) it follows that every pair (u ,y)  satis-
fying (1 .9) also satisfies (1.8). Thus , every input-output pair for C? characterized
by (1.8) satisfies (1.6), and vice versa.

1.8 CONDITION II , FIRST SELF-CONSISTENCY

4 -  The response y( t )  at any time t > t0 is uniquely determined by x and u(to , r J .
This must be true for all t~ . To qualify as a state space of U , the space ‘P must
have the property that , given any poin t x in ‘P and any input u(t o, tI (defined

— 
over the input segment space), the output at time t is uni quely determined by x

I. ~~~~~~~~~~~~~~~~~~~ ~-~r~~’ k .
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and u. The point x at time t0 will be called the state of Cf at to. The output is
independent of u or y prior to time t 0. This is a key property of the state space
concept.

An input-output-state relation of form (1.9) clearly satisfies the first self-
consistency condition—regardless of the range of a. (For all to the output y at
time t is uniquely determined by a and u.y is independent of u ory prior to ta.)
However , by changing the upper limit of the integral (1.9) from I t o  I + I , i.e., if
we have

r ~y ( t )  a + J u(~)d~ t >  t0
t o

we no longer satisfy the first self-consistency condition . The output at time t
cannot be determined without knowledge of u(s) between t and I + 1.

1.9 CONDITION I I I , SECOND SELF-CONSISTENCY

If the input-output pair (u [t0, t 1 J ,  y E to, t1]) satisfies (1.6), then ( u [ t ,t j I ,
y[ t ,t~ ]) also satisfies (1.7). u [t ,t 1 J and y[t ,t i j are sections of u [ t 0 , t i j and
y ( t O, t i I ,  respectivel y, and t0 ~ t <t 1. This must hold for all x in ‘I’, all
u[t o, t 1J in the input segment space , and all t0, t , t 1. The purpose of this

• condition is to ensure that the state space ‘1’ can include all possible initial
conditions for C?.

To help clarify the meaning of the second self-consistency condition con -
sider the input to C? over (t0, t 1 J as consisting of two contiguous segments ,
u°(to tj  followed by u ’(t ,t i I , i.e.,

(Note : u°u’ is not to be interpreted as the product of u° and u t .) If the
• input -output pair (u °u t ,y °y t )  satisfies (1.6), then the segment response to

u0u t beginning in state x(t o) = x~j is

y °Y 1 = F(x 0;u 0u1) ( 1.10)

To say that (u 1 ,y t )  also satisfies (1 .6), as the second self-consistency condition
— does , means that there must be some values of x in ‘P such that

= F(x ;u 1) ( 1.11)

for all arbitrary times t , where t0 <t ~ t~ . Denoting these values of x in ‘P as

~~~~~~~ ~~~~~~



FUN DAMENTAL CONCEPTS AND DEFINITIONS 13

the set A the second self-consistency condition requires that this set be non-
empty. (Figure 1 .4 graphically illustrates the idea.)

To further illustrate the second self-consistency condition let Cf be charac-
terized by the relation

i
_ t i

y(~) = a2 + u(E)d ~ (1.12)
J to

u and y are real-valued time functions and ‘1’ includes the set of all real numbers ,
i.e., a = x is any real number. Let’s consider the value of y at the particular time

= i~. For ~ = t equation (1.12) becomes

I - t i

y ( t )  = a 2 + u(t)d t (1.13)
J t 0

Let the input u(t) over the observation interval [0,5] be u(t) = _ 3t 2 and let the
initial conditions at time t0 = 0 be x0 = a0 = I .  From (1.13) the response over
[0,5] is

y (t )  = I — t~~~

Thus, the input-output pair associated with x0 1 for the interval [0,5] is
(_ .3t 2 , 1— t3 ).

__

Time

— — — -r — —

I- I ——-c ._ r~4

I II I
Time

Figure 1.4 Values of x in ‘P.

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - c-, .. ._-_.~~~~~~~ —
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Now consider the intermediate time = 2. The second self-consistency
condition requires that if the input-output pair (u(0 ,5], y(0 ,5] ) ,  which is
(—3t 2 , l — t3) ,  satisfies (1.6), then the same pair over the time interval [2 ,5]  also
must satisfy (1.6). Since C? is characterized by (1.12) , we have for [ 2 ,5)  

*

y ( t)  = a? + — 3t 2dt (1.14)

Also , from (1.12) we can write for the pair (—3t 2, l — t3 )

y(t) = I + -3t2dt + 
f

_ 3 12d1 (1.15)

The only way the pair (._3t 2, 1— t3)  can satisfy (1.14) is if

a2 1 —  
~ 

3t2dt
Jo

= -7

Clearly, a2 — 7 has no solution in ‘1’, where ‘I’ consists of real numbers. There-
fore A is empty and the second self-consistency condition is not satisfied by
relation (1.12).

On the other hand , if C? were characterized by an input-output-state id a-
- ‘  tion of the form

y( t )  = a + u(~)d~ 
(1.16)

Jt 0

instead of (1.12) , then for any x~ in 4’ and any ~ in [t 0, t 1 ] ,  where t0 <~ ~
we can write

f•t i _ t i
y (~) a0 + J u(~)d~ + J u(~)d~ t~ < t < t 1 (1.17)

Jr

The pair (u(t , t 1 ) ,y (t ,t1)) is an input-output pair with respect to

-~~ 
= aO + u(~)d~ (1.18)

Jt 0

~~~~ tL~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _
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It is seen from (1.18) that for any real-valued time function u in the input space
the state x 1 assumes a real value in ‘I’, given that a0 is real . Thus an input-
output-state relation of form (1.16) satisfies the second self-consistency
condition.

1.10 CONDITION IV . THIRD SELF-CONSISTENCY

We defined an object U as a family of sets of input-output pairs . To complete 
- •

the parametrization of the input-output pairs it remains to examine the meaning
of the term “the state of C? at time I ,” where t is arbitrary . This is equivalent to
asking what happens to the set A of values of x in ‘P as the input segment
u 1 (t ,t 1] varies over the input segment space of Cf .  We want to portray the
situation as one where xo and u° are held fixed and u 1 is varied over the entire
input segment space.

From the first and second self-consistency conditions we readily deduce
that the set A depends on x0, u° and u ’ (where the variable t is arbitrarily
fixed). We can write for A

A = A(sc 0;u 0u t )  (1.19)

Now consider the situation where u t varies over the input segment space of cf .
i.e., u t assumes the variations u 1

1 ,u~ According ly, the corresponding A sets
become A(xo;u 0u 1

I ) , A(x o;u 0u2
1 ) . . . .  If we form the intersection of all the A —

sets (denoted by the A ’ subset) this intersection (if not empty) is the set of all
points x in ‘P to which every pair (u ’ ,y ’) satisfying

y 0y t = F(xo ;u 0u1) (1.20)

also satisfies

y ’ = F(x ;u t ) (1.21)

for all x in the intersection .
- - Based on the above discussion we state the third self-consistency condition

as follows: Let (u°u ’ ,y 0y 1) be an input-output pair satisfying (1 .6) with respect
to some x0, i.e.,

y0 y 1 = F(xo ;u 0u 1)

Also , let A (xo;u0u1) be the set of all x where (u 1,y 1) is an input-output pair
satisfying (1.7), i.e.,

= F(x :u 1)

r ~~L 
- ~~ 
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The third self-consistency condition requires that  the intersection of all
A(xo;u 0u 1 ) taken over all u 1(t ,t 1J in the input segment space be nonempty for
all t0,  all x~ in ‘I’, and all segments u(r~,t i ]  in the input segment space of ( 1.

From the way in which the third self-consistency condition is formulated
it cannot be satisfied unless all of the A(x~ ,u0 u 1 ) sets are nonempty. This
implies that the second self-consistency condit is also satisfied. However , the
converse is not true.

• The meaning of the third self-consistency condition is readily demon-
strated by examp le (1.16). Let C? be characterized by an input-output relation of
the form

•
~

y(~) = x0 + f u(E) d ~ (1.22)
J t o

We establish the following conditions under which the third self-consistency
condition will be evaluated: t~j = 0, x0 = 4 , intermediate time t = 2, t 1 > 2,
u(s)  = 2~ for 0 < ~ ~ t. and u (s) = variable for 2 <~ ~ t j .  Dividing the integra -
tion range o f ( l  .22) into [0 .2] and [2 , a], where 2 <a ~ t , we have

I -2  i_a
y~a) = 4 + 2~d~ + I u(~)d~ 2 < a ~J o J2

i_a
= 8 + u(~)d ~ (1.23)

.12

which is of the same form as (1 .22). This imp l ies t h at (u(2 .t 1 I ..P(2 ,
~~i ]  ), with

y(2 .t j ]  defined by (1.23), satisfies (1.22) with x = 8. Therefore , t he A sets as
defined by (1.19) , (1.20) and (1.21) are nonempty. These sets all contain the
point x 8, and hence , so does their intersection. We conclude A is nonempty
when t = 2 . u(~) = 2~ for 0 < ~ ~ t , and that relation (1.22) satisfies the third
self-consistency condition.

1.11 STATE AT TI ME t

For the discussion to follow we denote the intersection of all the A sets (formed
by varying u 1 over the entire input segment space) as the A’ subset. (It has been
said that A’ is the set of all points x in ‘P to which every pair (u t ,y 1 ) satisfying
(1.20) also satisfies (1.21).) Clearly, A’ contains values of x where the response

- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 4
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to u 1 is the same for all starling states in A’. This is true for all & in the input
segment space. Therefore, the third self-consistency condition provides for the
following definition t of the slate of U at time I :  Given that Cf is characterized
by (1.6) and the response of Cf to input segment u0u t starting in state X() ~5

described by (1.20) and (1.21). then the state of Cf at ti me I is any state x in the
.4 ’ subset.

Symbolically, the state ot (1 at time t will be denoted as x (t) ,  bearing in
mind that this is merely a label to identify an element of A’(x 0;u 0u ’) with the
state at time t. Similarly, x(t~ ) will notational ly identify with the initial state of
Cf at time t0. According ly, t he response at ti me t can be written , in accordance
with (1.6). as

y ( t )  = y(x(t o ) ;u( t o,t ] ) (1.24)

We note from (1 24) that , for each fixed t, x(t0) and x(t) range over the entire
state space ‘1’, i.e., Rtx(t )J ‘1’. The components of x( t)  will therefore be desig-
nated as the state variables or elements of the sta te vector x (t) .

On considering an input u(t 0, t 1] applied to (f while U is in state x(t~), it
follows that x(t 1)  is the terminal state. If, however , we have u(t 0, t 1] followed
by u(t i .  t 2 J ,  u ( t 2 , t 3] then each of the respective terminal states
x (t j ) , x (t2) , x(t3) plays a dual role; each represents both the terminal state
relative to input segment t and the input state rela tive to input segment I + 1.

For objects characterized by input-output relations of the form (1.5), i.e. ,
Cf(u,y) = 0, the standard practice is to associate x( t )  with such objects by defin-
in g x( t)  in terms of u(t o, tI and y (t 0, t l ,  and to verify that the four consistency
conditions are satisfied. En cases where (1.5) is a differential equation then x (t )
can be defined in terms of u( t ) and y ( t )  and a finit e number of their time
derivatives. Other expressions for x(t) in terms of u(t 0 .t] and y ( t0, t ] can readi ly
be obtained by chang ing the coordinate system of the state space. Importantly,
there are many ways to associate a state vector with an object.

x(t) has been defined to be an element of the set A’(x(to); u 0 u ’). Since A’
depends only on x( t 0)  and u(t 0, t] ,  then so must x(t). Thus , we can write for the
state equation

x(t )  = x(x(t o);u(t o, t I )  (1 .25 )

Under proper regularity assumptions for x and u equations (1.24) and (1.25) will
tend in the limit to differential equations of the form

~(t) = x(x(t) . u(t) u~~ (t), t) ( 1 .26)

y ( t)  = y(y(t ). u(t) u~~ kt) . t)  ( 1.27)
I. op cit.

~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~.~~~~!
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18 AN INTR ODUCTION T O THE THEORY OF LINEAR SYS T EMS

where x and y are point functions and u (
~’)(t) is the kth derivative of u(t).

Equations ( 1.26) and (1.27) particularly app ly to differential objects and are
referred to as the state equations in differential form. Differential objects and
their respective state equation s are of considerable interest in system theory and
will be the focus of discussion in later chapters. In particular , linear differential
systems and their state equations assume the simple form of

~(t)  = A(t)x(t)  + B(t)u(t) (1.28)

y ( t )  = C(t)x(t)  + D(t)u( t )  + D i(t)u t t kt)  + . .  + D k(t)U~ ’~(t) (1.29)

where the coefficients are (time dependent) matrices.

1.12 MULTIPLE OBJECTS

Thus far we have considered only the single object (i. its terminal variables and
the relations between them. Our princip al interest , however , is a collection of
objects that interact with one another. We will now focus on the analysis of
multip le objects.

For the most part we shall use the conventional rectangular block to
graphically describe an abstract object Cf (see Figure (1 .5)). Here the leads
represent the terminal variab les, which can denote either scalar or vector varia-
bles. The important thing is that each variable is treated as an entity when each
object Cf is interconnected with other objects.

From equation (1.25). where

y (t) = y(x;u)

it is seen that each component of y( t )  is a function of x and u. Therefo re , we can
express each component of y as

y ,(t)  = y-(x;u) (1.30)

This implies that an object , as shown in Figure 1.5. having Q inputs and m
outputs , can be represented by m objects U 1 ,  U 2 .  (.13 ~~m each having Q

Figure 1.5 Graphical repre~~nIaIion of object.

11L - 
~~~~~~~~~~~~~~~~~~~~~~~~~~
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inputs and one output (see Figure I .6). Thus , it the objects under consideration
are oriented there is no loss in generality in assuming that the conipos ite
“object ” is made up of oriented objects where each has one output  variable.

1.13 INTERCONNECTED OBJ ECTS

Essentially, a “system ” is a collection of interacting objects. The interactions
between objects (i~ .L1 2 ~1N.  represent constraints on the terminal vari-
ables. An example of such a constraint is the fact that the ith terminal variable
of object Cf1 is equal to the kth terminal variable of object (i v .  for all t i n  T. The
set of objects @ j - U 2 (I v .  constrained in this manner is said to be an inter -
connection of (ii U 2 . . . ,  UN . Such an interconnection can be represented
graphically as shown in Figure 1 .7 , where the composite object is designated as
U .  Specifically, the set of objects {U~} i 1 , 2. 3 N. is said to be an intercon-
nection of the U 1 if eve ry object in the set shares at least one terminal variable
with one or more of the other objects of the set. If some, or possibly none , of
the U1 share terminal variables the collection is partiall y interconnected .

There are several simp le types of interconnections encountered frequently
in systems analysis; they are the tandem combination and the paral lel combina-
tion. In the sequel we will briefly highlight both.

Figure 1.6 Equivalent repr esentation.

C

Figure 1.7 lnt er con nect ’d objects.

I

U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1.14 TANDEN COMBINATIONS—INITIALLY FREE

For an analysis on multip le objects to have any concreteness it must be able to
answer for the composite object the same questions that are asked of the single
object: What is the input-output-state relationship of the composite interconnec-
non? What is the state-space? What is the output function space? At this point it
must be noted that answers to these questions , particularly for large complex
syste ms , have not been readily established. In fact some of the concepts sug-
gested below are tentative. The ideas presented below , although tentative and
sketch y, are represen t ative of some progress in this area.

In order to establish a basis for answering the above questions we intro-
duce the idea of the initialls ’ f r ee interconnection , which will be symbolically
den ote d as t l l I , ) .  The connections between the (t ,. as shown in Figure 1.7 ,
remain open unt i l  t = 

~
,. at wh~ch time the Q switches are closed. We regard (I as

a l imit ing torn m (as i~ ~~~~~~ of an init ial ly free interconnection Cf(t0). It is
therefore possible to re Ia~ the properties of (.1(t) to those of (t(t 11), thereby
gi ving a characteri i. ation to the state space of ( 1.

Consider a collection ot oriented objects ~~ 
, (12 , . . .  ~ N . (as depicted in

Figure I .7) where each is character iLed by a relation of the form

= y(x ’.u’) (1.3 1)

If there is no interaction between the various (1g. i . e . .  all the switches are open ,
then the collection is the direct product of (f t .  (12 UN .  which will be de-
noted as Cl~ X Cf2 X . . .  X Cf~ . The input to each U 1 along with the state of
each (i~ is clearly independent of the inputs , outputs and states of any of the
other objects in the collection. According ly the input and output of the corn-
posite Cf are defined to be , respectively, the composite vectors .

u = (u t ,u2 tr~
’) (1.32)

and

= (y l ,y 2 ~N) (1.33)

The corresponding input and output segment spaces of Cf are the products ,
respectively,

R [uJ = R[ u 1] X R[u 2 1 X - . . X R [ i / ”]  (1.34)

and

R[yj = R[y 1j X R[y 2 j X ... X R[y NJ (1.35)

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .
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Similarly, the composite vector

x(t) = (x1(t),x2(t),..., x”1(t)) (1.36)

is the state of (1 at time t . where the state space of U is the product space

‘is = si” x ‘is 2 x .. .  X ( 1.37)

Now let two of the 
~~~~~ 

say ~~ and Cf 2, be connected in tandem , with Cf 1
preceeding @2, as shown in Figure 1 .8. In a tandem combination the input u 2 to
@2 is “constrained” to be equal to the output y ’ of Cf , . It is necessary now to
distinguish between two situations: (1) u 2 = y 1 for t >  t~ , where t0 is the in-
stant u ’ is applied to @ i,  and (2) u 2 = y ’ for all t . Case (1) is the initially free
tandem combination, which will be considered subsequently. Case (2) is the
constrained tandem combination and will be considered in the next section. In
(I)  Cf and Cf 2 act like the direct product for t <t 0. The switch Q signifies that
u 2 is constrained to be equal toy 1 from time t0 on , but not befo re .

- 
- Proceeding with case (I) , where Q is closed at time t0,  we assume that Cl~

and (
~2 are characterized by relations of form (1.3 1), with the output segment

space of @~ contained in the input segment space of Cf 2’ Let the states of (l~
and (.12 at time tbe (as deduced from (1.31))

• x (t) = x(x~ ;u ’) (1.38)

where x~ = Xi(t ø) and u’ ui(10, t] . The initial states xd and x~ can be chosen
arbitrarily in ~~ and ~j ,2 , Therefore given x0

t , x02 and u ’(t o, tI we can find, from
(1.31) and (1.38), the output y 2 (t o, t J ,  and the states xt(t) and x2(t) for any
t > t 0. Thus , the f r ee product of the tandem combination (l~ and Cf 2 is an
object Cf(t~) characterized by the input-output-state relation

y 2 = y [x 0
2 u2 j

y [x~~;y(x~~;u ’)] (1.39)

where the composite state vector

= (x~ ,x0
2 ) (1.40)

Figure 1.8 Tandem combination of 1l~ and (12 .

Ia - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
- --~~~~~~~~~~~~ - 
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plays the role of the initial state of (1(t~ ). The state of ti(t~ ) at time 1 is

x(t ) = (x 1(t),x2(t)) ( 1.4 1)

where x t(t) and x2(t) are expressed by (1.38) as

x’(t) = x(x~
1 ;u 1 ) (1.42)

x2(t) = x(x 0
2 ;x (x 0

I;u I )) (1.43)

The corresponding output segment space for @(t 0) is the set of output functions
y2, i.e.,

R [y 2] = {y2) (1.44)

where y2 is determined by (1.39).
Clearly, equation (1.39) satisfies the first self-consistency condition of

Section 1.11. However , this alone is insufficient to qualify (1.39) as the input .
output-state relationshi p for @(t0) . (But it will be seen later that if (1(t0) admits
to the response separation property, highlighted in Chapter 2 , then the com-
posite state vector

x(t) = (x I(t), x2(t) xN(t))

for @ i. C l 2  ~~~ qualifies as the state vector of Cl(t~) at time t.)
It is important to note that the composite state vector for the free product

@ 1 and Cl2 , i.e.

x(t) = (x t(t) ,x2(t))

is unlike the initial state vector (x01 ,x0
2 ). The initial state vector ranges over the

product space ~ tI x ~1j2 , The vector (x 1(t),x2(t)), which is the state of C?(to) at
time t , ranges ove r a subse t of ’!’1 X ‘P2. This subset ‘I’(t0, t)is

‘I’(t0, t) = {(x1(t),x2(t))} (1.45)

where ~c0
1 and x~ are elements of ’!’1 and ~j ,2 , respectivel y, and the states x’(t)

and x 2 (t) are given by (1 .42) and (1.43), respectivel y. The arguments t0 and t of
the subset serve to show the subset ’s dependency on both t0 and t.

Typically, the free product of 3 objects @~ , @2 ,  @3 is

y 3 = y [x~~;y(x ç~ ;y (xç~;u 1 ))~ (1.46)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘, -~~~~
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Note th - t (1.46) is associative . ((.13(12) (11 and @3(( 12 @i )  both characterize the
same input-output-state relation. Obviously, (1.46) can be extended to N
objects.

1.15 TANDEM COMB INATIONS—CONSTRAINED

The idea of an initially free tandem combination of objects provides a con-
venient way of describing the constrained combination , i.e., the combination of ,
say (l~ and (

~2 ,  in which the input to (12 is constrained for all time t to be the
output of U~ . Such a combination , which will be designated as the combination
Cf . is depicted in Figure 1.8 where the switch ~ is closed and u ’ is applied to
afterwards.

The constraint u 2(t) = y 1 (t) for all t is regarded as the limiting form (as
-+ _oo) of the constraint u 2(t) = y 1(t) for t>  t0. The imp lication here is that

the state space of (1 is characterized by the limit , if it exists ,

‘J’(t) = lirn ‘I’(t0, t) (1 .47)

The exact meaning of (1.47) and the conditions under which it exists are com-
plicated and unsettled questions. However , for our needs we will interpret (1.47)
to mean that for each t we can approach any point in ~11(t) arbitrarily closely via
a point in ‘I’(t0, t). For systems of interest (differential systems) the state at time
t is defined by a fmite number of derivatives of the input and output at time t.
‘! ‘(t) can be determined through the process of elimination of identical variables
from expressions for states of ~~ and (

~2 .
Based on the above observations the combination Cf can be regarded as the

limiting form of the free product Cf (to) as t0 -÷ —o ° . The state space of Cf is a
subset ‘I’ of ’!’1 X ‘1’~ We have

~41(t) = lim ((x 1(t), x 2 (t))} (1.48)

where x~~, x0
2 and u ’ are elements of’!’t, ~!~2 and R[u ’J , respectively. x 1(t) and

x2(t) can be determined by expressions (1.42) and (1 .43), respectivel y. The
correspon”ing input-output-state relationship for (1 is of form (1.39) and (1.46),
with (x~ ,x02 ) ranging over ’!’.

Clearly, for the objects 
~~ i ,(f 2 (Lv the above analysis can be ex-

panded as appropriate.

~ iiI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~~~~-~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
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1.16 SYSTEM

We now return to our definition 1 of a system as given in Section 1.2. A system S
is a partially interconnected set of objects , called components. These corn-
ponents may be oriented or nonor iented; they may be finite or infinite in
number: and each may be associated with a finite or infinite number of ternunal
variables.

A system may be regarded as a single object. Conversely, any single object
may be regarded as a system. If a collection of objects Cl~ .@~ (ly is con-
sidered as a single system the set of terminal variables of the system S is the
union of the terminal variables of its components. If the components of S are
oriented , then so is S. The aggregate of shared terminal variables and the non-
shared output variables of the various components together comprise the output
variables of S.

‘I

1. op. c i . , p .  65.

~ 
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2
State Equations

2.1 INTRODUCTION

The intent of Chapter I was a more careful definition of a system than is found
in the texts of physics , mechanics and control theory . The building block of the
defintition was the oriented object , i.e., the sets of ordered input-output pairs.
The notion of state allows for labeling the pairs , or the parametrization of the
space of input-output pairs. The discussions of this chapter will expand on the
idea of system state. Specifically, the fundamental properties of the self con-
sistency conditions will be examined : the most important being the state separa.
tion property. This property leads directly to an input-output-state relation , in
canonical form , for linear differential systems. The definition of state . as formu-
lated in Chapters 1 and 2 is of general app licability. It provides a basis for
defining the states of complex systems comprised of both linear and nonlinear
components.

2.2 SEPARATION PROPERTY

In Sections 1.7 throug h 1 .11 we defined x(f). the state of (I at time t. where
t > to.  as an element of the intersecting A sets A(xo:u0u 1) . These sets are

25
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26 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

created at fixed I by varying u 1 over the input segment space. By its definition A
is the set of all x satisf y ing the relation

y(x0 ;u0u 1) = y (x 0;u °)y(x :u 1 ) (2.1)

or

y(x(to);u 0u 1) = y(x( t o);u °)y(x(t );u ’ ) (2.2)

for all x(t 0), u° and u ’. Relations (2.1) and (2.2) are interpreted to mean that
given an input consisting of segment u t) followed by segment u 1 the response of
Cf starting in state x(t 0) is response segment y(x(to);u 0) followed by response
segment y(x(t) ;u t), where x(t) is the state of Cf at time t >  t~ . This property of
x(t) is referre d to as the separation proper ly .

• By specifically designating x~ as the terminal state into which x~ is taken
by u° equation (2. 1)becomes

y(xo;u°u ’) = y (x0;u°)y(x~ ;u ’) (2.3)

Equations (2.1), (2.2) and (2.3) can be rewritten as an expression for y(r)
rather than the response segment y(t o, t j .  If we let the variable ~ be the inter-
mediate time between t0 and t 1 we have (in the limit) the identity correspond-
ing to (2.3), i.e.,

y(x(t0);u(t o, t j )  = y(x(~);u(~,tJ ) to < ~ c~ (2.4)

The expression y(x(~);u(~,t]) is the .esponse of Cf at time ( t o  u(~, t ],  with (1
initially in x(~) and where t0 <~ ~ t.

• The analyses of (2.l)— (2 .4) places in evidence a distinct connection be-
tween the self-consistency conditions and the separation property. The relevant
facts are summarized as follows . If a relation of the general form

y ( t )  = y(x;u) (2.5)

has the response separation property (for all x and u).

y(xo ;u(t o, t I )  = y(x~~;u(~.t J ) t~ < ~ ‘~~ a’ (2.6) —

(where x~ depends only on x~ and u) then we assert that  (2 .5)  satisfies the
three self consistency conditions , with ~ and x~ being the states of Cf at time
t0 and ~~. respectively. Further, equation (2.5) qualifies as an input-output-state
relationship.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Clearly, the first self-consistency condition is satisfied since y(t) is
uniquely determined by x~ and u. The separation property as stated by (2.6) is,
in fact , a statement of the second self-consistency condition (see Section 1.12).
By adding the qualification that x01 depends only on x0 and u , then every set
A(x0;u0u t) will contain x~ . Therefore the intersection of the A sets fo rmed by
varying u t over the input segment space will be nonempty. Thus , the third
self-consistency condition is satisfied. The importance of the separation property
is that for a given input-output-state relation of form (2.5) verification of the
self-consistency conditions is reduced to demonstrating that (2.5) has separation
property (2.6).

The separation property (2.4) can logically be extended to include the
sta te of (1. Given that the input-output-state relation is of form (2.5), i.e.,

y(t) = y(x(to);u(to,tl)

the state equation induced by (2.5) is

x(t) = x(x(to); u(t o, t J )  (2.7)

In keeping with (2.4) we assert that state equation (2.7) has the state separation
property

x(x (t 0);u(t 0 ;t] ) x (x(~);u(~,t J ) tO < ~ ~ t (2.8)

for all x(t 0) and ~. This property of state equation (2.7) is one of its key
characteristics.

To illustrate both the response and state separation properties of (2.4) and
(2.8) let (1 be characterized by the input-output state relation

y ( t )  = y(x ( t0) ;u(t o, t J )

= x(t0)e t—t o) + 
S

t
e t - t ) u(~)d~ (2.9)

The state equation induced by (2.9) is

x( t )  = x (t0) e t t 0) + f e
t _ t) u( ~)d~ (2. 10)

IL~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Specifying t h e  integration variable as r , where a’0 r ~ t , equation (2.9) can be
written as

y ( t )  = x(t 0)e t~~t o) + f e
t t ) u( ~)d~ + J e

_ ( t _ t) u(~)d~ (2.1 1)

However , from (2. 10)

x(r ) = x( t o) e~~
T_ t 0) + 5e

t_ t) u(~)d~ (2 .12)

Thus, response (2.9) becomes

y ( t)  = x(r)e_ ( t_
~~ + 

f

t
e t _ t) uu) d~

= y(x(r):u(r,t)) ~ 
< r ~ t (2.13)

which illustrates the response separation property. On returning to (2.10) the
state separation property (2.8) assumes the form

x(t) = x (r) e ’t 0) +

= x(x (r);u(r , t ) )  (2. 14)

2.3 STATE EQUATIONS

The ideas of Sections 2.2 can be combined into the following THEOREM 2.1 :
If U is characterized by relations of the form

x(t) = x(x(t0);u(t0, tJ) t > t0 (2 .1 5)

V(t) = y(x( t ) ; u( t ) , t )  (2 .16)

where x(t) has the state separation property (2.8). then x( t ) can be the state of

L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Cf at time t , and (2.15) and (2.16) the state equa tions of (1. Proof of this
theorem is seen by substituting (2.15) into (2.16) giving

v( t )  = V [x(x(t o); u(t o , t J  ),u(t ), 1 (2.17)

which is of fo rm (2.5), i.e..

‘1(t ) = y(x(t o) ;u(t o, t I )  (2.18)

By virtue of its state separation property equation (2.15) can be rewritten as

• x(x(to):u(to. t J )  x(x(~);u(~, t ] ) (2.19)

On substituting (2.19) into (2.17) we have

y(t) = ~[x(x (~);u(~,t I),u(t ), t] (2.20)

which is of the form

y ( t )  = y(x(~);u(~,t] ) (2.21)

However , (2.2 1) can also be derived directly from (2.17) by rep lacing t0 with ~~.

Thus,

y(x(t0);u(to,t]) = y(x(~);u(~, t J ) (2.22)

and (1 has response separation property (2.4). Further , since x(~) is determined
by x(t0) and u(t 0, t],  it follows that:  (2.18) is an input-output-state re lationship
for (1, with x(t) being the state of (1 at time t; equations (2.15) and (2.16) are
the state equations.

Theorem 2.1 offers further insi ght into the relationship between the state
separation property and the self-consistency condition s: it provides an effective
way of verifying that the self-consistency conditions are satisfied . An immediate
inference from the theorem is seen in the following COROLLARY : If (1 is
characterized by differential equations of canonical form —

x(t) = x(x(t), u(t ), t) (2.23)

V(t) = V(x(t),u(t),t) (2.24)

where (2.23) has a unique solution for x(t ), then x(t) is the state of Cf at time t.

I
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30 AN INT RO r UCT ION TO THE T H E O R Y  OF LIN E AR SY S T E M S

To prove thi s corollary we fist integrate (2 .23) between the limits r~ and a’:

x(t) = x(t 0) + ~~~~~~~~~~~~~~~ (2.25)

which is an implicit form of (2.1 5). (By hypothesis x(t ) is determined by X(t~~)
and U(t o .t ] .) Equation (2.25) has the separation property

-
‘ 

x(t) = x(r )  + 5 x(x(~),u(~),~)d~

The conclusion of the proof of this corollary follows from the parent theorem.
State equations (2.23) and (2.24) are quite general and cannot be readily

used in their present form. By casting them in a more exp licit form , which is
applicable only to linear systems, we can state that if (I is characterized by
linear differential sta te equations

x(t) = A(t)x(t) + B(t)u(t) (2.26)

y ( t )  = C(t)x(t) + D(t)u(t) (2.27)

where A(t). ..D(t) are time-dependent (but need not be) matrices then x(t)
qualifies as the state of Cf at time a ’. Equations (2.26) and (2.27) are the canoni-
cal state equations of the linear system (1. They are directly deducible 1 from
(2.23) and (2.24), respectively.

1. See , for examp le , ~p. cit. pp. 82-83.
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3
Time Invariance, Linearity
and Basis Functions

3.1 INTRODUCTION

To further solidify the ideas developed thus far we will establish , by definition.
ce r tain “benchmarks ” relative to which analytic discussion can be more mean-
ing ful. In particular.  these benchmarks will includ e definitions of the zero .
ground and equilibrium states.

The zero state , say state 0 , is defined as that state where , for all t~j. the
system response to zero input , starting in state 0. is a zero-valued output (null

— function). Symbolically , if . for all t0,

y(t) = y(0:0) = 0 (3.1)

where x(t0) = 0, then 0 is the zero state. The zero state response of the system at
time a’ to input u is the response with the systeni initially in its zero state 0; i.e..

y(t ) = y(0;u)

= y( u) (3 .2)

31
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32 AN INTRODUCTION TO THE T H E O R Y  OF LINEAR SYSTEMS

The idea of the ground state coincides with that  of the zero slate.  Consider
a syste m at tune t 0 in t he i n iti al state x(t~) = X I ) and let the applied input be
ze ro-va lu ed , i .e.. u = 0. We want to examine x (t ) as a’ —‘ ~~~ . There are two possi-
bilities: ( I )  x(t) may converge to a fixed state, say x~ , or ( 2 )  x(t ) may not
converge . We will restrict our a t tent ion to ( I ) .  In case ( I )  two possibilities again
ex ist: (a) x1 depends on x~ , or (b) x 1 is independent of x0. The ground state of
interest is condition 1(b) : it is said to be the l imit ing terminal state into which
the system eventually settles when no input is app lied. Symbolically, to say state
x 1 is the ground state imp lies that

x 1 = lim x(x 1t:0) (3.3)

where x 1 is independent of x0. The limit (3.3) is uni que . According ly, if x1
exists it also is unique. In conjunction with (3.2) the ground state response of
the system has the same meaning as the zero state response , with the exception
that the initial state is x0 instead of 0. At time I the ground state response of the
system to input  u Is

y(t)  y(x o :u) (3.4)

In addition to the zero and ground states it is meaning ful to establish the
identity of the equilibrium state. Essentially, a state , say ~~, is called an equilib-
rium state if it does not change for zero input. Symbolical ly , to say 0 is the
equilibrium state is to say that

x(O:0) a’ ~~‘ a’0 (3 .5)

where x(O;0) is the system state at time t ~ to, give n that the state at time a’0 is 0
when the zero-valued input is applied.

3.2 TIME INVARIANCE

In the sequel the specific systems of interest will be those that are time-invarian t
and linear. Time invariance can be conveniently discussed in terms of a time
translation operator T~ . The action of the operator on an operand is to sh ift the
operand by a fixed amount of time ~ along the time axis. Positive and negative
A correspond , respectively, to a delay or increase of ~ units. For A 0. T,~
corresponds to the identity operator I . This action on input u is depicted in
Figure 3. 1.

Consider a system in its initial state x 0 .but  not necessarily the zero state 0.

- , • _  .;
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o t~~~~~~~~~~~~~~~~~
9
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t 1o +
~~ 

t + ~~

Figure 3.1 Time translate operator 
~
‘j .

The system is said to be time invariant with respect to the initial state xçj if ,
for all starting states x0 , all inputs u and all time shift s A ,

T~ [y(x 0 ; u)] = V(x o ;T~u) (3.6)

Expression (3.6) is interpreted to mean that the response to T~ u with the
system initially in x0 is equal to the shifted response T~[y(xo;u)I with the
system i ni tia ll y in x0.

As special cases of (3.6) we examine zero state and zero-input time invari-
an ce . A system is said to be zero state time invariant if for all inputs u and time
shifts ±A the zero-state response to u is a time translate of its zero-state response
to the translated input . i.e., for all A and u equation (3.6) becomes

y(T~ (0;u)) = T~ (y(0;u))

y(T~(u)) = T~y(u ) (3.7)

Similarly, a system is said to be zero input time invariant if for all initial
states x0 , all initial times t0 and all time shift s A . the zero input response to u
starting in state x~ at time a’0 ± A is identical to the zero input response starting
in state x0 at time to. This implies that for all A and x(a’0), equation (3.6)
becomes

x 
‘ 

y(x(t 0 ± A);0) = T~y(x(t 0):0) (3.8)

3.3 LINEARITY

The term linearity suggests proportionality. Of interest will be the proportion-
ality among system quantities; specifically, their homogeneous and additive
properties. A system is said to be linear if it is both homogeneous and additive .

44
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It is homogeneous if for all inputs u the zero state response to an input  C’u is C
times the zero state response to u . where Cis a constant. We have

V(0:Cu) = Cy(0: u)

y(Cu ) = Cy(u) (3.9)

where y(u) is the zero state response to u. Similarly. a system is additive if for
any pair (or more ) of inputs , u 1 and u 2 . the zero state response to u t + u 2 is t he
sum of the zero state responses to u and u 2 :

V(0;u ’ + u 2 ) = y(0;u1) + V(0;u 2 )

y(u t +u 2 ) = y(u ’ ) + y(u2 ) (3.10)

On combining the ideas of (3.9) and (3.10) a system is said to be zero state
linear if and only if it is both homogeneous and additive . Therefore ,

V(O;C(u’+u 2)) Cy(0;u 1) + Cy(0;u 2 )

y(C(&+u2)) = Cy(u1) + CV(u2) (3.11)

If the initial state is x0, then the system is linear with respect to the initial state
X0 if

y(0;C(u1 +u 2)) = Cy(x0;u1 ) + Cy(x0;u2) (3.12)

holds for all real constants C and all u in the input segment space.
As a further consequence of (3.l 1) and (3.12) it can readily be shown that

if a system is zero state linear then it is also linear with respect to all init ~al states
reachable from the zero state. However , it is not linear with respect to all
possible init ial  states. To clarify what is meant by linearity we add the property
of zero input linearity . A system is zero input linear if its zero input response is ar - homogeneous and additive function of the initial states , i.e..

y(Cx0:O) = Cy(x0:0) (3.13)

y(x~~+x ~~:O) = y(x~~:O) + y(x~ ;O) (3.14)

for all Xo (i.e., x~~,x0
2 ,. . .) in the state space ‘i’-

Equations (3.13) and (3.14) can be combined giving

y(C(xd + x~ ) :O) = Cy (x~~;O) + Cy(x~ :O) (3.15)

~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~-I-:: ~i ..:~
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Clearly , from (3.12) and (3.15) a general definition of a linear system . which

includes both zero state and zero input linearity , can be made as follows : A

system is linear if and only if

( I )  it is linear with respect to all possible initial states , i .e. .

y(0;qu ’ + u2)) = Cy(xo;ut) + Cy (x0;u 2 )

(2) it is zero input linear , i.e.,

y(~~x~~+x ~~);0) Cy(x~ :0) + Cy(x t? ;0)

As an adjunct to the above definiti on another basic property for linear
systems can be deduced from (3. 15). Letting C I and u 2 = 0  we have , using
(3.2 ),

y(x 0;u ) = y(x 0;0) + y(O;u) (3.16)

The system response to u starting in state x~j is equal to the zero input
response starting in state xo plus the zero state response to u. Property (3 .16) is
known as the decomposition property . Since this property was derived from
(3.15) it follows then that every linear system has the decomposition pr operty.
However , the converse is not necessarily true. We conclude the discussion on
linearity by stating that every linear system must be zero state linear , zero input
linear and must posse ss the decomposition proper ty .

Equation (3.16) is another form of our initial input-output-state equation
(1.6). The importance of linearity is to provide a relative ease in determining the
system response to a given u. Through the decomposition property the effect of
u is separated from the initial excitat ion as represente d by y(xo :0). As will be
seen later , the zero state response y(0 ;u) can be reduced to resolving u into

sim pler components and determining the zero state response to each component
separately.

3.4 ZERO STATE OR IMPULSE RESPONSE

By (3.16) we established that the input-output- state relation for any linear

system admits to a representation of the form

y(t ) = y(x 0 :0) + y(0:u) (3.16)

Focusing our attention on the zero state response . without  loss of general-
ity we let 0 = x~ and u = b(t — 

~), a unit impulse (delta function ).  We chose

~ 
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u = ó(t — 
~) since any arbitra ry signal u can be reduced to a series of elementary

functions , such as an impulse (see Appendices A and B). Therefore the prob lem
of deter m ining the response y(0;u) to an arbitra ry input is reduced to finding the
system response to the elementary signal. The second term on the righ t in (3. 16)
becomes

y(O;u ) = y(u) y(6(t - 
~~

)) (3. 17)

or in scalar form 1

y(a ’)  = y(~
(t -  ~)) (3. 18)

A fixed (time invariant) system can be identi fIed with an operator , say /1,
wherein the system is entirel y characterized by its response at time a’ to a simp le
impulse b(t — ~) applied at any instant of time ~. Accordingly, we can write for
(3.18)

y ( t )  = y ( u )  = I 1(u(t)J (3.19)

= H(b (a ’ - ~)] (3.20)

= h (a ’,E ) (3.2 1)

where h(a ’,~) is the zero state response at time t to a unit impulse ó(t — 
~) app lied

at time ~~. Accordingly, h( t,~) is also called the impulse response . From (B.4).
however ,

u(t )  = u(E)~ ( a ’— ~)d~ (3.22)

• 
Therefore , substituting (3.22) in (3.19) we have

y(a ’)  = H [ J u ( (a’ -~~)d~] 
(3.23)

• ; ‘ ‘ which , due to the homogeneous and additive properties of linear systems . can be
• written as

I. For convenien~~ in the analysis we will first examine Ihe input-o utput-staie equations in
scalar form.

ii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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y(a’) = f H[~(t - ~)J u(~)d ~

= 5 h(a ’,~)u (~)d ~ (3.24)

Integral (3.24) can be viewed as a summation of responses to impulses applied at
time ~ of streng th u(~)d~, with ~ varying over the time internal (_ oo,00) . As a
result it is often referred to as the superposition integral .

To qualify the zero state response h(a’,~) as time invariant it must be of the
form h(a ’ — 

~). This fact becomes evident by writing (3.24) as

y( a ’)  = 
f h(a ’ - ~)u( ~)d ~ (3.25)

Shifting the input u(E) in time by A units the output at time t + A becomes

r t~~~
y ( t )  = J h ( a ’+ A -  ~)u (~ -’ A)d ~

to +~

We see that the zero state response at time a’ + A is equal in magnitude to the
zero state response at time a’, which satisfies condition (3.7). Hence , we assert
that a linear system is zero state time invariant if its impulse response h(t,~) is of
the form h(t — ~). Therefore a system obeying the input-output relation (3.19) is
time invariant if

y(t — 
~) = H[u(t — 

~)j 
(3.26)

For multidimensional inputs , where

u(t) = � u ~(a’)

each component u (a’) may be expressed as

u1(t) = 5 u1( ~~~( t-  ~)d ~ (3.27)

H
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The response y (t)  y1(u) resulting from input u1(a’) is

y~(a’) = J h~1(t ,~ )uj (~)d ~ i = 1 ,2 n (3.28)

where h 1(a’,~) is the response at output terminal i occurring at time a’ due to a
unit impulse applied to input terminal / at time ~. The resultant output Y, (t) at
the ith terminal due to all inputs ! = 1 , 2 k , is

= / f h ( ~~) ( ~)dE (3.29)

— In matrix from (3.29) becomes

y(t) = y(u) = $ H(t ,~)u(~)d~ (3.30)

- where H is the matrix of all zero state responses at time a’ due to all the unit
• impulses app lied at time ~.
- 
. It is often analyticall y conve nient to express h(t ,~) in the frequency

domain , i.e., as a transfe r function. Accordingl y, the Laplace transfo rm is the
analytic tool . For systems where the impulse response is h(t — 

~) the transfer
- . function H(s), where s is the complex frequency, is defined as the Laplace

transform ofh(t):

H(s) = £{h (a ’)}

= J h (t)e ”da ’

= 
f h(a ’ - ~)e _ 5 ( t t) dt (3.31)

3.5 ZERO INPUT RESPONSE AND BASIS FUNCTIONS

We next exa m ine the first term on the right in (3.16), i.e.. the zero input
response. Reflecting on (3.5) we see that the zero input response is synonomous

It ~~~~~~~~~~~~~~~~~ - ,--
~~~~~~~~~~~~~~~~. -- .
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to the (equilibrium) state at time a’ beginning in xO at time t0 when the zero-
valued input is applied. Our goal will be to more exp licitl y define y(x0;O) in
terms of the basis vectors which span the state space ‘I’. In doing so, however , we
will revert to scalar quantitie s to make the analysis more convenient .

Let the linear vector space defining the vector y(xo;O) be spanned by the k
basis vectors a (i = 1 ,2 ,. . . ,  k) ,  where the scalar product of any two unit vectors
a and a, obeys the relation

aj a1 = (a1I~~
) = (3.32)

• The vector x(a’) can be represented as

x (t) = (3.33)

The scalar functional of the vector x(a’) can be written as the linear combination

k
F(x(a’)) = (3.34)

l = t

where the p1 are scalar constants or functions. Consequently , the scalar-valued
zero input response must be of the form

y(x0 ;0) = 
~~~~~~~~~) ( )  (3.35)

• where

= (x~ ,x~ , . . . ,  x~ ’)

and p1(a’o, a’) (i = 1,2 k),  play the role of constants for fixed a’ and t 0.

The ço~ have a simple interpretation. They form the elements of a k-
dimensional vector 0, where

k
0 � a 1p 1 (t0.t)

= (~p 1(t 0, t ) .p2 (t 0, a ’) P k(t O, t ) )  (3.36)

& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :
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and correspond to the a, of (3.33). Thus , we can write

y(a, ;0) = p . ( t 0, t)  i = 1 ,2 k (3.37)

that is, ~p,(t0, a’) is the zero input response starting in state a, at time a’0.
Since , by definition , the a1 are linearly indep endent , we demand that the

functions ~p1 also be linearly independent. They, therefore , constitute a set of
basis functions for the system. The vector 0 defined by (3.36) is the basis
function vector for the system. According ly, the scalar-valued zero in put re-
sponse (3.35) can also be written as

y(x0 ;0) = (OIx o> (3.38)

3.6 INPUT-OUTPUT-STATE RELATION AND BASIS FUNCTI ONS

Returning to (3.16) the scalar form of the input-output-state relation for a
linear , time invariant system admits to

y(t) = (0lxo~ + 5 h(t - ~)u(~)d~ (3.39)

As such (3.39) satisfies the self consistency conditions of Sections 1.11 , 1.12
and 1 .13. Equivalently, it has the separation properties of Sections 2.2 and 2.3.

The choice of basis functions 4~1 which satisfy (3.39) is constrained , since
• - they must induce a relationship between themselves and the impulse response

h(t — ~). We shall now embark on examining these constraints more closely for
the purpose of deducing state equations in a more exp licit form.

We begin by assuming that the basis functions cp~ are infinitely differ-
entiable and that the derivatives are continuous over the (finite) observation
time of interest. The response separation property of Sections 2.2 and 2.3 spe-
cify that in the time interval a’0 ~Z r ~ a’ the zero-input response at time a’ starting
with state xQ0) must be the same as the response at time a’ starting in state x(r).
Using this property the basis functions must therefore satisfy the (time transla-

- 
. tiona l) requirement

(0(a’ — t0)Ix (t o)> = (Ø( t — r)lx(r)) (3.40)

for all t0, I and r . Clearly, on letting to = 0 and x(t o) = a~. equation (3.40)
reduces to (for an n-dimensional vector)

p , ~~~~~~~~~~~~~~~~~ ~~~~~~: . .i~~ ~~~~~~~~~~~~~~~~ —- -. -—  - —.-~~~~ .~~~~~~ _ _ _
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= 
~~~~~ (a ’-  r)x1(r) (3.41)

Equation (3.4 1) imp lies that each basis function ~1 can be represented as a linear
combination of the set of delayed bases functions p1(a’ — r), (i = 1, 2 n).  This
is the translational property of basis functions. On differentiating (3.40) n —

times we have the following n equations:

(0t ° 1
~(a ’- to) I x(a’o)> = (~~~ 1kt r)Ix(r)> (3.42)

-
‘ The superscript signifies the differentiation. Equations (3.42) can be written in

compact matrix form as

— t0) x(t 0) = 4(a ’ — r)x(r) (3.43)

where 4 is a n n  X n matrix. The rows of ’~ are the vectors 0,0( 1)  

0 p 1 (t)  p2(t) . . . p,, (a ’)

c1(t) = = 
~~~~~~~ ~~~~~~ ~~~~~~~~~~ (3,44)

0(
~~ 1) 

~1~” ’kt ‘~~~~(a ’) - - .

By setting a’ = r in  the right-hand side of (3.43) the relation ship between x(t) and
x(t0) is established as

4( 0)x ( t)  = ‘F (t — to)x (t 0) (3.45)

If $(0) is rionsingular then x(t) is determined uniquely. The basis functions
can be normalized giving I’(0) I , where I is the identity matrix.

The normalized set of basis functions p is found through the transformation

0
’ = 04~ ’(0) (3.46)

Equation (3.45) thereby reduces to

x(t) = 1(t — a’0)x(t o) (3.47)

~ 

~~~~~~~ - —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ ‘~~~~~~~ -. 
-- —- --—-.. .

~~

. - J4



42 • AN I N T R O D U CT I ON TO THE T H E O R Y OF L I N E A R SY STE M S

We see from (3.47) that ~ (t — a’0) is an operator which transforms the initial
stat e x(a ’o) into the state x(a ’). Hence , ~~(a’ — a’0) is referred to as the state transi-
tion ,nairix .

3.7 STATE EQ UATIONS

In the preceding discussion the separation property of the zero input response
was used to establish the basis function (derivatives) composition of the state
transition operator $. We will now consider the more general situation of a
non-zero input and the relations between the state transition matri x (basis func-
tion) and the impulse response h (t ,E).

In the general case the response separation property of Sections 2.2 and
2.3 imply that the input-output-state equation (3.39) must satisfy the time
translation identity

(0(a’ - a’0) x(t0)) + J ’ h(t -

= (0(t r) Ix(r) > + f h(a’ - ~)u (~)d~ (3.48)

fo r all a’0, all a’ ~~
‘ t~ and all r , where a’0 ~~ r ~ a’. (Note that by letting u (t)  = ~ (a’)

and setting x(to) = 0, a’0 = 0, equation (3.48) yields

h(a ’) = (0(a’ — r) I x(r)> (3.49)

This shows that the impulse response is a linear combination of the basis func-
tions.) Di fferentiating (3.48) with respect to r gives

~~ 5
h(a ’ - ~)u( ~)d~ = ~~~[(~~t~ r)Ix(r)) + 

j h(a ’- ~)u (~)d~
]

h(t — T)U(T) ~~- (0(t — T)IX(T))

= —( ~ (t— r)l x(r)) + (0(a’ — r)~*(r)) (3.50)

“1
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Now differentiating (3.50) n — I ti m es with respect to a’ results in n expressions
as follows:

— r )u(r)  = ~~~(O
(
~~

.l)(t — r )j x(r) )

= —( ~~~‘~~~~(a’ 
— r)I x(r)> + <~ (a~ l 

~(a’ — r)L *(r) > (3.5 1)

where ~ = 1,2 n , denotes the order of the time derivatives. The set of equa-
tion (3.5 1) can be represented more compactl y in matrix form as

h(t — r ) u ( r )  = -
~ - I 1(t  — r)x ( r ) I  (3.52)

where 1 is the state transition matrix defined in (3.44) and h is the column
vector

h(a ’)
h ( ’) ( t)

h(t ) = 
: 

(3,53)

Integrating (3.52) between the limits a’0 and t give s

f
h(a’ - r)u(r) dr = 5 d [4(a ’ - r)x(T)

= 4m(t —

= 4(0)x(t) — ‘~ (a’ - a’0)x(a’0)

Making use of the fact that ~ (0) = I the above integration yields the state equa-
tion

x(t) = 
~~(a ’ - tO)x (t o) + 

f
h(t - ~) u(~)d~ (3.54)

Equation (3.54) is the sta te equa tion in explicit form for a linear t ime-invariant
system. It expresses the system state at time a’ as a function of the initial state at

- _ _
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time 10 and the input over the interval ( I t) . t I .  For zero input (3.54) reduces to
(3.47).

Earlier we established (3.39) as the scalar -valued input-output-sta te  rela-
tionship for a linear system. On differentiat ing (3.39) n — I times with respect to
a ’we have

y ( t )  = (Ø(a’ - t 0) ix ( t 0)) + $ h ( a ’-  ~)u( ~)d~
t O

y(n t)(a’) = (Ø (~ ‘)(a ’ - a ’0) x(t 0)> + 
j

h( ’l - l ) ( t  -

Comparing the results with (3.54) where

x(a’) = 
~~(a’ - a’o)x(to) + 5 h(t -

it can be concluded that

x(t) = (y (t) , y ( ’) ( a ’)  y (t1~~)( a ’)) (3.55)

The above relationship is valid only if h(°~~) ( t )  does not con tai n de l ta f u nctio ns
at t = 0. Further , this relationship applies only to the system character ized by a
differential equation of the form

+ + . . .  + Q0y = mku~~ + mk l U~~~~ + . . .  + m0 u

where Q and m are constant coefficients.
Returning to (3.54) we examine the response when the input is u =

Setting x(t 0) = 0 and a’0 = 0 we have

h(a’) x(t) a’~~~0

h(t) = 0 a’ < 0 (3.56)

Equations (3.56) are interpreted to mean that h(a’) is the system state at time
given that the system was initially in its zero state at time a’1~ when excited by
the impulse ~(t) .  Thus h is referred to as the state impulse response .

~ 

~~~~~~~~~~~~~~~~~ _ _ _ _
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State equation (3 .54), which expresses the system state at t ime a’ in terms
of t he ini t ia l  state at time I ll and the app lied input , can be readil y reformatted
in t o a differential  form.  Retur ning to (3.51) and sett ing r = 1, we have , remen i-

beri n g t h at ~ (O) = I if ~ (0) is nonsingula t .

~(a’) = ~ (O)x(t) + h (0 ) u ( a ’)  (3.57)

which is the state equation in differential form. 4(0) relates to the state transi-
tio n matrix c1 (a’). where specifically 4(a ’) is the solution of the differential
equation

~~(a ’) = ~ (O)~~(a’) (3.58)

Thus , for a system characterized by input-outp ut-state relation

y ( r )  = (~~ t - a’0) I x(t o)) + 
j

Iz (t  - ~)u (~)d~ a’ ~ t (i

the state equations in differ ential form are , for all a’.

x(t )  = 4(0)x( a ’ ) + h(0)u(f) (3.59)

y ( a ’)  = (0 (0) Ix( a ’ )> (3.60)

According ly, t h e state a t t ime a’ is . by (3.54),

x(t) = 
~ ( t-  a ’0)x(a’0) + 

J
h(t ~)u(~)d~

3~* 3 ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Canon ical Formula tion

4.1 INTROD UCTION

The canonical forms (2.26) and (2.27) of the state equations provide for the

central idea of associating a state vector with a linear differential system. The

resulting prod ucts of the method described below are expressions for the state

vector along with expressions for the matrice s A , B. C and D of (2.26) and
. - ,  (2.27).

In general a linear differentia l system can be character ized by an input -

output relation ship of the form

L(D~y = M(D) u (4.1)

where the operators L(D ) and M(D) are 
—

L(D) = + ~~~~~~ + , ..  + ~()

M(D ) = + flzk l Dk 1 + • , •  +

46
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d ’/ dt 1 ( i=  1, 2 k n)

D~ =f ) da ’

The coefficients V and m are constants , and not necessarily rea l . 1 Eq uat io n (4 .1)
can also be formulated as

v = M(D)u (4.2)

for differential operator systems , or as

L(D)y = u (4 .3)

for reciprocal differen tial operator systems. Specifically, our procedure of
attaching a state vector to differential systems will be to solve expressions (4.1 ).
(4.2) and (4.3), and relate the resulting coefficients V and m to the components
of the state vector.

4.2 RECIPROCAL DIFFERENTIAL SYSTEM

For reciprocal diffe rential systems we seek the solution to (4.3):

L ( D ) y — u

whe re

L(D) = Q0D ° + Q0_ 1pf l 1  + . ..  +

To solve (4.3) we will make direct use of the Laplace transform. The transform
- - of the nth derivative of a time function y(a ’) can be writ ten as

1d°y(t)~£ t_ —~j - -’-} ’ = s° Y(s) — s°~~y (0)  — s~~
2Qv(0) — ... — D ”~~~~~i ’ ( O )

= s’7 Y(s )  - s~~~y( 0)  - s~~ 2 y W(0)  - , , .  -

I .  In general the index used for both coefficients Q and so . i.e., Q,0 and 01k are not  the
same. It is recognized that  the order of the differential operators associated wi th  u and I
will be different  from one another ;  however , there is no loss in gener al i ty in using a single
subscri pt m. This wilt be done in the sequel for convenience only.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . “L .~~ 
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where s is the complex I’requency, y (1)  is the ith derivative of y(0). and Y(s) is
the trans f ’orm of v(t). The transform of both sides of (4.3) gives

+ Q0.. j s” I + ~ , + V0)Y(s) = U(s) +

+ (Q0s° + V,,...1s”~~ + ... +

+ , , .  + (V 0s’~+ 2 0 ...1 s”~~ + ... + Q 0)
(4.4)

On letting

L(s) = Q
51s ” + Q

~..i s ° 1  + , . .  + Vo

equation (4.4) reduces to

Y(s) = + 
~~ V~s’~~

t + ... + ~1 
y (1 1 ) ( Ø )  (4.5)

‘ The inverse Laplace transform of both sides of (4.5) gives the time dependent
output as

y(a’) = 

~~ 
y (i l) (o)~~(a’) + 

j  
-. ~)u (~)d~ (4.6)

where

h (a ’)  =

H(s) = !/L(s)

and

(Q 0s~~
t + 2f l 1 ?~~

1 t  + .. .  + V~ 1‘p .(a’) = £~~ L(s ) J 

(4 7 )

The time functions ~p1 satisfy the di fferential equation

L(D)sp, = 0

~ 

.::~~:~~ -~~~~~ , - .  
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whereas I , satisfies

L(D)h = 0

Clearl y the 
~ 

are linearly independent and qualify as a set of basis func-
tio ns for the system characteri zed by (4.3). It follows that (startin g at a’0 = 0)
the input-output pair (u .y )  satisfying (4 .3) also satisfies (4.6), since~’(4.6) is an
extension of (4.3). A closer examination of this relationship reveals that for
every input-output pair satisfying (4 .3) there corresponds an n-tup le of complex
numbers (X 1, A 2 is0) such that (u .i) satisfies (4.6) for t ~ 0 with

y O ‘)(O ) = is. i 1 , 2 n (4.8)

(Conversely, for every a-tup le ( 15 1, . . ., X,~) the expressions for y  given by (4 .6),
where each .v~’~~~(0) is rep laced by X~ (i 1,2 n).  defines an input-output
pa ir for (4.3); i.e. , (4.6) is a solution of (4.3) for each ~~~~ Xv .)  By virtue of
the constancy of the coefficients of (4.3) and the time translation properties of
linear time-invariant systems the time-shifted pair T~(u ,y)  satisfying (4.3) also
satisfies (4.6). Therefore, the general solution to (4.3) for arbitrary t o can be
written as

0

y ( t )  = Ey U_ t) ( t 0) ,p 1 (t — a’0) + 
,,,f h (a ’ — .~)u (~)d~ (4.9)

where a’ ~ a’0.
The state vector x(t ) must now be fixed to the system. This can be done

for linear time-invariant systems by relating the constants of (4.3) with the
components of x(to) . A straightforward way to do this , though not necessarily
the most advantageous method for all cases , is to relate the basis functions with
the respective s01. of (4.9). From (3.55) the components of x(a ’0), which are the
coefficients of the basis functions , are

x 1( t0) = y(a ’0)

X 2(It)) = y t1
~(a ’tt )

Xn(t~ ) y t ° 1~(a’~ )

We readily identify x(a’11) as

x(a ’11) ( .s ( 6, )v ~
1 
~(t ~1 ) y ( f l -  ‘~ (a’0)) (4. 10) 

a..- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Digressing temporaril y an alternative method of estab lishing the compo-
nents of ’ t h e  state vector x(t 0) is seen from expression (4.5 ). The Lapl ace trans.
form of the respective basis functions gives

~n — l  ~n — 2 .~ I
L(s) ‘ L(s)  ‘ ‘ ‘ ‘ ‘  L(s) ’ L(s )

Thus , the components of x(a ’0) are

x 1 (t f ) )  = 20y (a’0)

x2(t 0) = Q,1y t 1)( a ’0) + Q0. 1y(a’0)

x3(a ’0) = Q,1y~
2

~ (t0) + Q0_ ty W(a’o) + Q0., 2y( a ’0)

Xfl(a ’t ))  = Q0y~~~~~)(a ’0) + Q~~~1y~~~~
2 )(a ’0) + . .. + Q~y~

1) (a’0) + Q 1y(t 0)

Returning to (4.10) the terms yt ’  ~) (I = 1,2, . . . ,  n) in (4.9) are each re-
placed by their corresponding expressions from (4. 10). Accordingly,  the solution
to (4.3) for arbitra ry a’0 becomes

y (a’0) (~ (a’ - to) lx( t o) )  + j / i(a ’ - ~)u (~)d~ (4.11)

which is in agreement with (3.39). By (4. 11) the state vector x(t0) has been
fixed to the system.

To complete the analysis of the reciprocal differential operator system it
now remains to show that x(a’) qualifies as a state vector. We form x(a’) and y(t) .
If the resultant expressions are of the canonical form (2.26) and (2.27).

x(t) = Ax + Bu

y(a’) = Cx + Du

then x(a’) qualifies as a state vector. Considering only fixed systems (systems
where A , B. C and D are constant matrices) it follows from (4.10) that at time a’

x(t) = (y(a’),y~’)(t) ... ,y (
~~ ’t)(a’)) (4. 12)

and

~(a’) (y ~’) (a ’) ,y (2) ( t) , . . . , y ~°) (a ’))  (4.13)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .-. -
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From (4.3) the general expression involving the nth derivative ofy(t )  is

y t
~~(a’) = (u(a ’) - V 1y (n- t) ( t)  - Q~ ~y (f l ~ 2 ) ( a ’ ) _  . . .  - V~~y (t ) )

Substituting the above expression into (4 ,13) gives

~c(a’) = (y (a ’),y 2) (t) , . . . ,y 0~~’) ( t ) , ~~~
— [ u ( t)  - Q0 1 y (0 1) ( t)  - . . .  - Qo~(a’)J)

(4. 14)

Thus, the components of x(t) are a linear combination of x(a’) and u(a ’). Hence ,
from equations (4.12), (4.13) and (4.14) the components of x(t) are

- ,
‘
. x 1(a’) = x2(t)

12(a’) = x3(t)

Qo 20 — t  1x~(t) = ——x 1(t)  — . .  — —x~(t) + —u(a ’)
~ ~

y(t) = x 1(t) (4.15)

Equations (4.15) expressed in matrix form become

x 1(a ’) 0 1 0 - . - 0 x 1(t) 0

x2(t) 0 0 1 . - .  0 x2(a’) 0
.. = + ... u(t) (4.16)

F ‘ V 0 Q0 . 1 1
x,~(a ’) -r  

~~~~~~ 
x0(a ’)

y (t )  = [I 0 - . - 0] x~(a’)

X2(t)

x~(a’) (4. 17)

LI - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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or x(a’) = Ax + Bu

y(a’ ) = Cx + Du

= (C lx) (4. 18)

where

0 1 0 . . .  0 0

-
‘ 

0 0 1 . . .  0 0

A B =

V0
-

. V Q Q -

C = [1 . . .  0] D = 0 (4.19)

Thus, x(a’) as defined by (4.12) qualifies as the state vector for the reciprocal
differential operator system characterize d by equation (4.3).

4.3 DIFFERENTIAL OPERATOR SYSTEM

The differential operator system characterize d by (4.2) is of interest for two
reasons: It is possible to realize any differential system as a combination of both

• the reciprocal differential and the differen tial operator types. Secondly, each is
the inverse of the other. For the system of (4.2) we seek the general solution to

y M(D) u

where

M(D) = rn~ D0 + m0 1 D ° 1  + , ,.  +

The Laplace transform of both sides of (4.2) gives

Y(s)  = M(s) U(s) - ~~ (m0~ ’~~ + . . ,  + n1)u (
~~’)(0) (4.20)

where
M(s) = m,1s’t + m0 1 s ~~’ + ... + m0 (4.21)

~ 
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and U(s) = £ { u ( t) }  (4.22)

The inverse transform of (4.20) gives the time-dependent output , for a’0 = 0, as

y(a’) = � s,1(a ’)u (t 1k0 ) + 
J

h(t - ~)u(~)d~ (4.23)
i= t  0

where

= £~~{m~s~ +m 0 l s ” ’  + ... +n 1} (4.24)

and

h(a ’) = £ ‘{M(s)} (4.25)

From (4.23) the n basis functions ‘p are linearly independent. They represent
the zero-input responses to the different ial operator system. Similarly , h( a ’) is the
system impulse response. Relating the basis functions with the respective ~ we
let , from (4.23),

x 1(t) = u(t)

x2(t) = u(t) (a’)

x~(t) = u (
~~~ (t) (4.26)

Thus , the state vector for the system of (4.2) is

x(t) = (u(t) , u (1) (t) , ... , u (
~~~)(a’)) (4.27)

Forming the expression for t(a ’)

x(t) = (uW(t) , u( 2 ) ( t ) , . - . ,

and comparing it with that for x(t) we see that

x 1( t ) = u

x2(t) = = I i

x3(t) = u~
2
~ = X2

x0(t)  = 14 (0’ I) (4.28)

• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Hence , the input output relation (4.2) can be written as

y = m0u + + .. .  + ~~~~~

= mOxf + m1x2 + ...  +

= mOxl + m 1x 1 + . . .  + m~x0 (4.29)

Equations (4.28) and (4.29) comprise the state equations for the reciprocal
differential operator system. Equation (4.28) is the corresponding state vector.

In the representation outlined above the state equations representing the
differential operator system are not of the canonical form

* = Ax + Ru

y Cx + Du

The corresponding input-output relation for arbitrary a’0 is obtained by sub-
stituting for each u(1

~~) (0) in (4.23) the corresponding x (0) as determined by
(4.28). The resul t is

y(t) = s~i (t t0)x 1(a’0) + ...  + ~,~(t -  a’0)x0(a’o) + 
f

h (a ’ ~)u (~)d ~

= (+(t — t0))x (t 0) ) + 

f
h(r — ~) u(~)d ~ (4.30)

4.4 GENERAL SOLUTION

We seek the solution to the generalized equation (4.1):

L(D)y = M(D)u

where 1

L(D) = V0 D~ + + . ..  +

M(D) = m0 D0 + Q0_ 1D°~~ + , . .  +

- 
‘ 1. In general the order of the coefficients for 2 is not the same as those for m. The common

order n is being used for convenience only.

&, ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ . -- -- --~ -—-
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The Laplace transform of both sides of (4. 1) gives

L(s ) Y(s) M(s)U(s) + f(s)

Y(s) = H(s)U (s) + L’~ (s)f (s)  (4.31)

The ratio H(s) is defined as

H(s) = M(s) / L(s)

and the polynomials L(s ) and M (s)  were previously given as

L(s)  = Q,1s” + + , , ,  +

M(s) = m0s” + m0_ 1 s”~~ + ...  + m0

f(s) is the residual polynomial resultin g from the Laplace transform of u(t) and
y (t)  at time a’ = 0. When arranged in powers of s the polynomial f ( s )  is

f(s) s f l _ l [ Q0y( 0) — m~ u( 0)]

+ s~~ 2 [ Q 0 L~p (0)  — m~D u(0) + V0_j y (0) — m0 .1u(0)J

+ [Q~D’~ ’y(0) - m~D”~~u(0) + .. .  + 21y(0) - m1u ( 0)j
(4.3 2)

The state vector x(t) can be established by relating the components of
x(t 0) to the components off(s) for a’0 = 0. Equating xi(0) to the coefficients of
5n—l , x2(0) to the coefficients of s” 2 , etc., we have

xj Q y - m ~u

X2 = Q~Dy — m~Du + Q0_ 1y - mn_ l u

= Q~D ’~
1y — m~D”~ u + . - ,  + Q1y — m1u (4.33)

Equations (4.33) can also be written as

x~~~~Q~y - m 0u

X2 = xl + Q~~1y 
- mn_ l u 

X,,~ = ‘~n—1 + V 1y — sn1u (4.34)
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and from (4.1) it is clear that

= — ( Q 0y — m0u) (4.35)

Solving equations (4.34) and (4.35) for the various i~ and y in ter ms of the
correspo nd in g x, and u gives

= ~~ E~2n_ ix t  + + (V ,1m0. 1  -

X2 = +F— Qn_ 2x 1 + Q0 x3 + (Q0m0_2 — V0_2 m0) uI

~ n —1 = + + (V0m 1 — V 1m 0) u j

= ~ -[— Q0x 1 + (V0m0 — V0m0)u ]  (4.36)

and

= +Ixi + m0uJ (4.37)

To qualify x(a’) as the state vector it is necessary to demonstrate that x, x . ~v and
u satisfy the state equations (2.26) and (2.27). By inspection (4.36) and (4.37)
are of the form

* Ax + Bu

y = Cx + Du

- - where

—Q~ V0 0 . .  0 Q,5m0_ 1 — V0_tm 0

‘Q n—2 0 V~ ... 0 V0m0_2 —

B

~

— 

—V 1 0 0 . .  V,1
— Q~ 0 0 . .  0 V0m 0 — V0,n 0

~~~~ J
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= [-i- 0 ... 0] D = [m n] (4.38)

Thus , x(t) as defined by (4.33) qualifie s as tile state vector representing a system
characterized by differential equati on (4.1). The system matrices A and B are
constant n X n and n X I matrices , respectiv el y. Operators C and D are the
coefficients of L (D) and M(D).  respectively.

It was previously seen from (3.39) that the system output is

y(t) = (~~(a’ - a’o) l x(a ’o)> + J h(a ’ -

The scalar product above identifies the zero-input response as

(~ lx > = + + .. +

Using representation (4.33) and (4.34) equation (4 .3 l)can be written as

n -

Y(s) = H(s)U (s)  + 2~~~~—~x~ (4.39)

The components x1 of the state vector are identified as the coefficients of the
respective S11~~ in (4.33). Applying the inverse Laplace transform to both sides of
(4.39) and comparing the results with (3.39) the zero-input response s are

,oj = £~~ {~
} i = 1, 2 n (4.40)

The responses Pl .~P2 ~p,, are linearly independent and constitute a set of basis
functions for the system.

4.5 SYSTEM REALIZATION AND EQUIVALENCE

Given a linear system characterized by a single differential equation of the form
(4.1) one can always construct (realize) an equivalent system comprised of an
interconnection of adders , scalors, integrators and differentia tors. In establishing
the meaning of the equivalent system it is assumed that the reader is familiar
with the analytic definitions of adder s and scalors. Thus , further elaboration on
these two terms is not warranted. For our purposes we will proceed to define

- 
-
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inte gj ato r s and different ia t urs .  An integrator is a system whose input -output
relation admits to the form

(D + a)t ’ = u (4.41)

where the constant a is not necessarily real . The integrator is denoted by
I /(D + a). The state of an integrator at time a’ is proportional to its output :

x(a ’) = ky(a ’)

where k is the constant of propor tionality.
A differentiator is a system whose input-output relation admits to the

form

y = (D+b)u (4.42)

where b is also a constant not necessarily real. The diffe rentiator is denoted by
(D + b). The state of a differentiator at time a’ is proportional to its input :

x (t) = k’u(t)

A vector x whose components are the outputs of the integrators and the
inputs to the differer itiators qualifies as a state vector of the equivalent system.
(It is immediately obvious that by letting the output of an integrator also serve
as the input of a differentiator the dimensionality of x for the equivalent system
is reduced. Although a dimensional reduction of x is highly desirable from a
computational point of view an arbitrar y reduction or assignment of state com-
ponents may prove to be futile in providing for a solution of the input-output-
state or canonical equations.) As a general rule the procedure for associating a
state vector with a system comprised of adders , scalors , integrators and differen-
tiaa ’ors involves f irst assigning a component of x a ’o the output of each integrator
followed by assigning a component of x to the input of each diffc rentia tor not
connected to a ’he output of an integrator through a scalor . This rule is ex-

emp lified diagramatical ly in Fig. 4.1 , which shows integrators I~ and ‘2 inter-
conn ected wit h di ff erent iators D 1 and D 2 . ‘l’h e adders are denoted by the + sign s
alid t ile scalors by the constants k 1 and k2 . State vector components x 1 and x2
are assigned to the outputs of integrators ‘i and ‘2 .  respectively. The rem aining
component , X3 ,  is assigned to the input of differentiator D 1. Note that the input
to differentiator D2 is directly connected to the output of integrator 1~. Thus no
component is assigned D2 . The state vector x consists of components x 1, x2 and
X 3 .

Another observation , not quite as apparent as the one cited above , involves
virtual removal of the integrators and di fferentiators . thus reducing the system

~
j
~I - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figur e 4.1 Associating st a te  Yecior wi th  sy siem of
adders. scalors. int egrat ors and different i ator s

to a menioiy less interco nnection of adders and scalors. Letting the output  of the
ith integrator be x, we see from (4.41) that the input to the itil integrator is
equa l to (D + a ) x ,. Similarl y,  l e t t ing  x1 be the input to the jth different ia tor  by
(4.42) the output of the /th differenti ator is equal to (D + h1)x ,. It can be
reasoned that for an interconnection of adders . scalors . in te grators and differen-
tiators the input and output  of tile system will remain unaltered if the ith
integrator is removed and replaced by an input x app lied to tile terminal to
which t he output 01 the ith integrator is connected. The term (D + a 1)x ~ plays

the role of a suppressed output at the input terminal of the ith integrator.  In like
fashion the system output and input remains unaltered on remov ing the jth
differentiator and rep lacing it by an input (D + b1)x1 app lied to the terminal to
which the output of the jth differentiat or is connected. x plays the role of a
suppressed output at t he input termina l of the jt li dif f erentiator .  On app lying
the above reasoning to the interconnec tion of Fi g. 4 .1 we see the system can be
reduced to a series of segregated i t l c I I l u r ~ l ess int c rc onn cc t ions  of adders and

scalors, as exemp li fied in Fig. 4.2. I - w r I t  f ig. 4 .2 we obtain by inspection tlse
simulta neous equations

k, ( I) + / t -’ 1x1 — U

(D + b 1) x3 — ( D — a j ) v j = — k j.v 2

(D+n).v =

= .V t

u x~ 
11) + b 1 IX r I)) + 

~~ lvi

2 I l) ~ - ‘2

( D+h 2)x 1 0—

Figure 4.2 Merno ry less Sy stem.

III ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ,~
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Upon rearra ngement t u e  above equa t ions  ~~~ t i l e

X t = -b2x 1 + ~~~ X 3 -

= - a2x 2

= ~a~ - b ~ )x i - /c 1x2 + 
(~

_ _ b
i) x3 -

y = x~ 
(4.43)

which can be writ ten in canonical for m as

* A x + B u

y Cx + DU

whe re

[- b2 0

A 1 -a~ 0 B =  0

(a 1 — b 2)  -k 1 (~~
_ b 1)

C I I  0 01 D 0

Equations (4 .43) are the desired state equations for the equivalent system of Fi g.

4. 1. Thus , the relationsh ip between the system described by the differential

equation

L(D)y = M(D)u

and an equivalent system described by the canonical equations

x A x + B U

y = Cx + Du

~~~~~~~LI~I~~
I

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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conIes into sharper focus. Given any proper time-invariant systel’I of finite order
cli ara ct er id ed by the above canonica l equations . one can always s t ructure an
eq uivalent system characterized by a singl e (or set of) differential  equat ion (s )  I) f
t he form (4. 1).

The above technique is but one of many means to realize a sys tem de-
scribed by an equation of form (4.1). In summary the teeliniqu~’ is as follows :
Given a system characterized by the relation

l. (D)y = M(D)u

an equivalent system can be constructed of adders. scalors. differentiators and
integrat ors. The equivalent system is a realization of the give n system . A state
vector x can be associated with the equivalent system. Since the two systems are
equivalent it follows that x is also a state vector tor the give n system. Similarly.
the state equations for the equivalent system may be regarded as the state
equations of the given system.

4.6 METHOD OF PARTIAL FRACTIONS

As a special case of the realization technique we examine tile methods ofexpan-
sion by partial-fractions. Our interest in thIs  method is in the fact that  it yields
state equations in which the A matri x is in diagonal form. thus the ei genvalues
(or characteristic roots) associated with the system are readily identified. This ,
of course , req uires factori ,ation ut I. (D). whI ch  in certain cases may prove to be
a disadva n tage of t he tec hn i que. It is desired that  I.(11) he factored and put into
the fo rm

L ( D)  = ( D -  A t )O I ( / ) A 2 ) 2 . - ( D  X q )°~ (4.44

where

L (D)  = V0D~
I + t,,. ~

D”1 + - - - + V 1,

a I + 0 2 + . . . + a q = f l

The X ’s a re the distinct  roots or zeros of I . (D)  and the O s  are their  respecti ve
r n u l t ip l ici t ies.

To i l lus t ra te  the partial  fraction techniques we will analyze two examp les:
t he c~’se of simp le feru s and the case of mul t ip le zeros. For the case of simp le
zeros comlsider tile system of integrat ors shown in Fig. 4.3. We have the condi-
t ions 0t = = = I . and c i,  c2 .  . . .  are constants .

~~~~~~~~~~~ 
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u I!) 5 i )
C c

u 11) 
~2l +

~~~~~~~~~~~~~ -

Figure 4,3 System of si mple zeros.

Using (4 .44) the form of the input-output relation is

(D-  X 1 )(D - A 2)(D - A 3 ) . . .(D - A0)y = M(D)u (4.45)

Let the system of simp le zeros be proper , i.e. , the degre e of L(D) is greater than
the degree of M(D), and (D— A,), where i = 1,2 , . . .n , is not a factor of M(D) .
Clearl y,  by (4.45) the transfer function for the system having simple zeros is of
the fornl

il(s) = 
(s - X 1)(s - X 2) - . - (s - A0) 

(4.46)

On expanding H(s) in terms of partial fractions we have

C1 C2 Cp~H(s) = + —+  ...  + — + d~ (4.47)s — A 1 s — A2 s — A 0

where the constants c, are dependent on the A and the coefficients of M (D) . The
term d 0 is equal to zero if the degree of M(D) does not exceed n — I .

Digressing temporaril y, we verify that (4.47) is the transfer function for
the system in Fig. 4.3. The Laplace transform of the state equations

x Ax + Bu

y = Cx + Du

where A. B . C and D are constant matrices , gives

sIX(s) — x(0) = AX(s) + BU(s) (4.48)

IEI . . 
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Y(s) = CX(s) + DIJ(s) (4.49)

Solving the dynamical equation (4.48) for X(s) results in

X(s) = (sI - A) t x(0) + (sI — A)~~BU(s )

which , when substituted in (4.49). yields for the output

Y(s) = C(s I — A)~~x(0) ‘I- [C(s I — A) ’B + DjI ..)(s) (4.50)

The output in (4.50) identifies the system zero-state response and zero-input
response in the frequency domain. We designate each respectively as Z(0~U(s))
and Z(X(s);0) . Letting the state x(0) be the xero state the system response is ,
from (4.50),

Z(0;U(s)) = [C(sI — Af~B + D J U(s) (4 .51)

For zero input the system response is

Z(X(s) ;0) C(s I — A)~~x(O ) (4.52)

As was specified earlier the matrix D is zero for a proper differential system.
Letting the input to the system be the impulse ~(t), and since £{..~( t) }  1 , the
transfer function is identified from (4.51) as

H(s) = C(s I — A) ’B (4.53)

In comparing (4.53) with (4. 52) it is seen that for the simple case chosen—a
proper system of simple zeros—the transfer function is related to the zero input
response as

H(s) = Z(X(s) ;B)

i.e., the transfer function H(s) is the Laplace transform of the zero input re-
sponse starting in state x(0) = B. Assuming the matrix (s i — A) is nonsingular the
ma trix identity for the inverse operator can be written as

adj (s l— A)
(sI - A) 1

s i - A l

where sf ’— A l and adj(s I — A) are the determinant and adjoint of (sI — A).

respectively. From (4.53) the transfe r function becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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C[adj (sI — A)]B
H(s) = (4.54)

s I - A l

By inspection the state equations of the system of simple zeros shown in Fig. 4.3
are

Ij  = A t xt  + u

= A 2x2 + u

X0 x0 + u

y c1x 1 + + ... + c0x,~ (4.55)

from which the system matrices are

X 1 0 . ..

0 A2 ...
A = B = C = [C j c2 . . .c , 1] (4.56)

0 ... X,~

Substituting the expressions for matrices A. B and C in (4.54) yields

C1 C2 Cp~— + — + , ,  + —
s — A 1 s — A 2 s — A n

thus , verifying (4.47).
In accordance with the above analysis we assert that for a proper system of

simple zeros characterized by an input-output relation of the form (4.45)

(D-X 1)(D-X2)...(D-X0)—— M(D)u

where the various A are distinct and no term (D — A )  is a factor of M(D), the
transfer function H(s) can be represented in partial fraction form (4.47):

C2 C0H ( s ) =— + - —-—— + .. . + —
4 

s — A 1 s — X 2 s — A 0

The system as shown in Fig. 4.3 is a realization of the system represented by
equation (4.45). The vector

p 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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x(t) = (X l,X 2 , . . .X n)

defined by (4.55) as

I = A1x1 + u j = 1, 2 n

qualifies as the system state vector. Equations (4.56) are the corresponding state
equations for the system.

In extending the above discussion to the case of multip le zeros we first
consider , for simp licity , the case where L (D) has one multip le zero A1 of  order
n. The expression for L(D) becomes

L (D) y =

= M(D)u (4.57)

The corresponding expression for H(s ) can be written as

M(s )
H(s ) = (4.58)

( s— A 1) 0 (s — A0+1 ) . . . ( s — A0)

Expanding H(s) into partial fractions gives

Cl c2 CaH(s) = +
( s —  A~~ ( s —  A 1)a~~ ( s —  A1)

+ 
c0~ 1 

+ - - .  + 
c,, 

+ d0 (4.59)
(s — A0+1) (s — A, 1)

By (4.59) it is seen that , in essence , one multiple zero of order a has the
equivalent effect of adding a integrators to one of the integrator circuits. This is
shown grap hically 1 in Fig. 4.4. (Obviously, for the case of more than one
multip le zero, say m multiple zeros each of order a.~~.y ~~, respectively , the
equivalent effect would be to add a integrat ors to the respective circuit labeled
a . fl integrators to the respective circuit b , . . .  ~ integrators to the respective
circuit labeled m.) Choosing the output of each integrator as an element of the
state vector x (x 1.x2 x0) the state equations are. by inspection.

1. F rom Zedeh and Desoer. Linear System Theory , Mc{~raw-Hllt , New York 1963.
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Figure 4.4 System of multiple zeros.

I i A 1x 1 + x 2

1a-1 = A iX a . i  + Xa

= A iX a + 0

i~~~~A~x0 + u

3’ = C 1X 1 + c2X2 + ... + ~~~ + d0 (4.60)

wherein it is clear that this choice of x qualifies as a system state vector. Hence ,
for a proper system characterized by the input-output relation

(D— A1) ~a( D _  Aa + i). . .(D A) y  = M(D)u

where the various A, are distinct and no term (D — A )  is a factor of M(D), the
transfer function H(s) can be represented in partial fraction form (4.59). The
system of Fig. 4.4 is a realization of (4.57). The corresponding state equations in
canonical form are , from (4.60).

x Ax + Bu
-S

y ( C l x ) + d ou

~~~~~ 
—
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where

A 1 1 0 ... 0 0

O X 1 1 .. . 0

A 0 0 A1 1 . .  0 B =  0

0 0 0  . . . X0 1

C = [C 1 C2 . - ,  c0]

I
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5
Solutions to the
Canonical Equations

I
I

5.1 FIXED CONTINUOUS-TIME SYSTEMS~ TIME DOMAIN ANALYSIS

The differential equations governing the behavior of linear continuous time
systems were established in (2.26) and (2.27) as

x (t ) A(t)x(r) + B(t)u (t)

y( t )  C(t)x(t ) + D(t )u( t)

For fixed systems the matrices A , B , C and 0 are fixed . i.e.. they are inde-
• - pendent of time. In determining the time-dependent solutions to (2.26) and

(2.27) for fixed systems we first consider the homogeneous form of (2 .2 6 )
where u( t )  0. Equation (2.26) becomes

x( t ) = Ax( t ) (5. 1)

68
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where the matrix A is a constant n latri x. Solving (5.1) for x(t) between the time
limits t 0 and t we have

f
l .J~ ) 

= Af d tx(z-)

x(t)
I n —  = A(t — t0)

x(t) = eA( t_ b 0) x(to)  (5.2)

Upon comparing (5.2) with (3.47). wherein

x(t) = 4( t  — t0)x(t 0)

it is seen that the state transition matrix can be represented as

— t0) =

= I + A(t - t0) + A 2 (t - t 0) 2 
+ (5.3)

Thus , by (5.3) ,  1 ( t )  is also referred to as the fundamental matrix.
The comp lete time-dependent solution to (2.26), where A and B are con-

sta n t matrices , is readily obtained through the method of variation of the
parameter. Assume the solution to (2.26) is

x(t) = eA(t t o) f ( t )  (5 . 4)

where f( t )  is to be determined. The time derivative of solution (5.4) gives

x ( t)  = Ae~~’’ °~f ( t)  + e~~t b 0) f ( t )  (5.5)

Subst i tu t ing ( 5.4 )  into (2.26) and using ident i ty  (5.5) gives

~~ Ac t - t o) f(~) = Bu(t)

= e~~
t _ t 0~ (t) ( 5.6)
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Multip lying each side of (5.6) from the left by e~~~
( t b 0) and integrating be-

tween the limits (— °o , t), assuming f(~ oo) = 0 , we have

= 

f
df(~)

f(t) = 
J

~ e~~~~~t0) Bu~~)d~

which , when substituted in solution (5.4), gives

x(t) = e t b 0)J e ( t_b 0) Bu(~)d~

= e~~t _ t o)f °
e

_
~~t t 0) Bu(~)d~ + f e~~

t_ t ) Bu(~)d~ (5.7)

Evaluating (5.7) at t = t0 gives the initial state as

x(t 0) f e~~~
t_ t 0) Bu(~ )d~

Therefore , solution (5.7) becomes

x(t) = eA(t t o) x( t o)  + f e ~~t t ) Bu(~)d~ (5.8)

= ‘F(t — t0)x(t 0) + j’- 4(t - ~)Bu(~)d~ (5.9)

For fixed systems it is convenient to establish t0 = 0, in which case equations
(5.8) and (5.9) become

x(t) = eAtx (0) + ~~
t
eA( t _ l ) Bu(~)d~ (5.10)

= 4(t)x (O ) + f  4 (t — ~)Bu(~)d~ (5.11)

~I. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :.~~~~~~~~~~~~~~~~~~~~~
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Finally, on subst i t t i t ing (5. 11) into (2 .27)  the input-output-s tate  relation for a
continuous-time system is

y(t ) = C [4’(t)x(0) + f  4 ’(t - ~)Bu( ~)dE
] 

+ Du (5. 12)

Equations (5.1 1) and (5.12 ) are the system state equations. It is clear from -4
(5. 11) that the system state at time t can be determined if the system state at
some previous time t0 (t 0 < t )  is known and if the input u(r) is kn own . The
manner in which the initial state is “transformed ” is characterized by the make-
up of 4’ and how the input is app lied , i.e., by the matri c operators A and B. The
system output (5.12) reflects a dependency on all four operators.

5.2 FIXED CONTINUOUS-TIME SYSTEMS: FRE QUENCY DOMAIN
ANALYSIS

For fixed continuous-time systems the differential equations to be solved are

x = Ax + Bu

y Cx + Du

where A , B, C and D are constant matrices. From prev ious discussions the
method of Laplace transforms was seen to be a convenient method for solving
equations of this form. It was established in (4.48) and (4.49) that the Laplace
transform of both sides of the above equations gives, respect ively,

sX(s) - x(0) = AX(s ) + BU(s)

Y(s) = CX(s ) + DU(s)

From (4.48)

X(s) = (sI — A)” ’ x(0) + (sI — A ) ’ 1  BU(s ) (5.13)

- 2. X1(s) £{x1(t)}

= 
X2(s ) 

= 
£~x 2 ( t f l  

(5.14)

X
~

(s) £{x~(t) }

U ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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— which , when substituted in (4.49), resulted in the input -ou iput equation

Y(s) = C(s I - A)~~x(O) + [C(s I - A~~
1 B + DIU ( s)

Y1 ( s)  ,L { v 1 ( t ) }

Y2( s) 
= 

£~ .s’2 ( t)}  
( 5 . 1 5 )

Y,,(s ) £{y0(t)}

The zero-state response , i. e., x(0) = 0, identifies the transf er function
matrix H(s ) in (4.50) as

H(s ) = C(sI~~ A) ’1B + D (5.16)

r// ti (s) /112 ( s )  . . .  H t,i (s) 1
(5.1 7)

Lilni s)  1
~n2(5

) . . .

Writi ng the zero-state response as

Y(s) = H(s) U(s ) (5. 18)

the ith component of the transform vector ‘i(s) is

Y,(s) = l/ , 1 U1(s) + ii,2 U2 (s)  + . . .  + !1111U,1(s )  ( 5. 19)

It is apparent from (5.19) that  11j 1 ( s )  is the transfer  function between input u1( t )
and output v 1(t). In Section 3.4 h11(t) was identified as the response at the ith
output  terminal due to a unit impulse app lied at the jth input terminal .  We
conclude , therefore , that

Hj~(s) = C{h~1 (t) } (5 .20 )

— 

as 
Equation (5.10) gave the general time-domain solution for a fixed system

x(t) = 4 ’( t)x (0)  + f 4 ’(t -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
, .~~~~~~~~~~~~~~~~~~~~~~~ “ ~..•
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\ 5 ( l ~~R’ . b r  convenience , t0 = 0. App lyi ng the theorem for  t i l e  Lap lace t ra nsform
of a convolution the Lap lace transform of the above equ a tion is

X( s) = ~ (.s)x(0) + ~ (s)BX(s )  ( 5 . 2 !)

where

$(s ) = .C~4 ( t )~ ( 5 .22)

( b ( t )  has previo usl y bee n identified as the fundamental m atr ix  of the system.
Compari n g ( 5 . 2 1)  wi th  (5 .1 3 )  the Lap lace transform of the f t ind anienta l  matri x
is

= (sI  — A)~ (5.23)

or

eAt = 4 ’(t) = £~~ (st — Aj ~~} (5.24)

Thus , the fundamental  matrix 11(t) is the inverse Lap lace transform of tile
matrix ( sI — A) — 1~ According l y. $(s) is referred to as ti l e character istic Ire-
quencv matrix of the system.

Using tile mat r ix  identity for an inverse operator equation ( 5 . 2 3 )  can be
wr i t t en  as

~ (s) = (si - A)’1 adj (sI - A) 
( 5 .25)

lsi - A j

where .s I A l and adj ( sI — A) are the de te rminant  and adjoint of (sI — A). re-
specti ve l y. For a system of order n , A is an n X n m a t r i x .  Therefore the deter-
ifli nafl t  si — A is a pol ynomial in s of degree n. which can be wr i t t en  as

si — Al = s + a1 s’~~
t + ~2s~~

2 + .. .  + a0 . . j s  + a0

= (s — X t) A l (s _ X 2f ~2 .. .( s — A,1) an

= p( s )  (5 .2 0 )

Po lynomial ( 5 . 2 0 )  is the charac tensti e po!vnoniial of the system. its zeros
A 1 . A 2 A0 (those values of s for which i i  A = 0) are t h e  characteristic roots
or eigen values of the system. According ly, the  equatio n

s i  - Al = 0 ( 5 .2 ~~)

is called the characteristic equation of the system.

2
~~ ... ,‘
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For tile simp le case where n is 2 or 3 expansion of adj(sI — A) in (5 .25)  by
cofact ors suffices to determine ~(s). Let (si — A)11 denote the (n — 1) X (n — I)
subm atr ix  of (si — A) formed by deleting row i and colunln / . The scalar

c,j = (— I )‘~ ‘i (sI - A ),11 (5.28)

is the cofactor of the (i ,j)  element of (si — A). The n X  n matr ix  (si — A) ’
formed by all the cjj elements is the cofactor Inatrix of (sI — A):

C I t  “ 12 ,

“21 (02 - - -
cofactor (sI — A) = (si — A) ’ = — 

(5.29)

£ 01 C0 2 ‘ . ‘

The adjoint of (si — A) is the transpose of the cofactor matr ix  of (sI — A):

C i t  C2t  ... coil
- Cp C22 . ..  C02 I

adj(si — A) = (SI — A) = (5.30)

C10 C20 . . .  C0~

The tilde denotes the transpose .
t n princip le the above procedure provides for determining ~~(s). Howe ver,

for values of ,z greater than 3 this procedure becomes impractical since , essen-
t ially, n 2(n — 1) X (n — 1) !  m u l t iplications are involved. A more practical tech-
ni que , which also lends itself to machir ,~ computation , involves extending the
method of expanding a rational function to matrices whose elements are rational
funct ions. We let

(si — Aï” = —
~~~~~~

— = 
~~~~~~ (5 .31)s I - A  p(s )

where

B(s) = B0s 0’1 + B 1s ~~~
2 + .. .  + B,, 2s + B0 1  (5 .32)

and

p(s) = s + at s fl’1 + a2s~~
2 + . . .  + a0

LI 
~~~~~~~~~~~ . ~~:‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : .i±~~ ~~~
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The coefficients B0, B 1 , . .. ,  B,~~1 are constant a X  a matrice s , and p(s) was previ-
ously defined in (5.26). Given an n X n matrix A the coefficients a1 of the
polynomial p(s ) and the coefficients B1 of B(s) are determined by the following
algorithms:

a1 = ‘- --~-t r (B1_ 1 A) i = 1, 2 n (5.33)

B, = B,_ 1 A + a, I I = 1, 2 n (5.34)

The above al gorithm leads to the following relations between the coefficients a
and B1 :

a1 — t r (A) B0 l

= --~- t r ( B 1A) B t = B0A + ai l

a3 = -+ t r ( B 2 A) B2 = B 1A + a2 I

a0_ 1 = ~~~~~~~ tr (B0 ...2 A) B~. 1  = B0_ 2 A + a~. i I

a0 = — - ~- t r ( B 0 1 A) 0 = B~ _ 1A + a0 1 (5.35)

Equations (5.35) are a more efficient procedure in computing (si — A )”1 . Only p~
matrix multip lications are required as opposed to n 2(n — l )(n — 1)! using the
method of expansion by cofactors.

To complete the computation of 4 ’(t)  in (5.24) we compute the inverse
Laplace transform of (si — A).’1. Equations (5.35) result in a tnatrix for
(SI — A)”1 whose elements are rational functions. The inverse Laplace transform
of a proper rational function (considered to be the ratio of two polynomials
where the degree of the numerator is greater than that of the denominator) is
most readily obtained by expanding the rational function into partial fractions.
As an examp le let F(s) be a proper rational function in s defined as

F(s)  = N~s)/ Q(s) (5.36)

1. V . N. Faddeeva. “Computational Methods of Linear Algebra. ” Dove r Publicat ions.  Inc..
New York . 1959.

~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
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If the degree of N(s)  is greater than tha t  of Q(s) . and if  F(s)  has poles at
s = X 1. X2 X,~ and the order of the pole at s = A1 is a, th en (5.36) can be
factored as

0 0/

F(s ) = ~~~ Yjj - (5.37) —
j = t  i= i ( s - A 1)’

A hint  of the s tructure of (5.37) was first seen in (4.58) and (4.59). Each
nonrepeated factor s — X~ in the denominator of (5.37) results in a term

( s-A k )

whereas each of tile repeated factors (s — X,)°/ give rise to csj  term s

Y0. . + Y .  - _____

il (s - A.)” 
a~~~~/ (s - ~ .)0/..I ‘ (s -

For a simp le first-order pole at s = A 5 the coefficie nts }~ may be evaluated by
the formula

N( s)
— (5.38)

Q(s)/(s — A 5) ls=x q

= ~~~~~~~~~ (5.39)

whe re D (X 5)  is the derivative of Q(s) evaluated at s = A 5. For a pole of order at
= A~ we have

= 
j ,~~ 1

i~[ A’(s) 1 (5.40)
‘ (a~ — 1)! ds0 1 ’  LQ(

~
)/(

~ 
— A1) °ij s x ,

where 1= 1 . 2 a~.
To obta in  the inverse transform of F(s) consider tile following: Tile

Lap lace transform of a time function of the form f ( t)  = ~~~~~ -. 1) ! is

_____ = (5 . 41)

a .
~~~~ -~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Secondly, the transform of the product of two functions , wherein one of the
functions is an exponential , is

= F(s + X )  (5.42)

Combining the ideas of (5.41) and (5.42) we can write

f n—I )
£ 1  “ ~~~~ = 

1 (5 43)
1(n — I)! J (s+A/ ’

Applying the rationale of (5.43) to (5.37) the inverse Lap lace transfo rm of
(5.37) can be written as

f ( t )  =

pi 0/

f ( t )  = £ 1{~~ ~~ 
1 }j = 1 i = 1  ( s - A 1) ’

= ~~~exi~~~ ~ ( i - I ) !  
(5 44)

Expression (5.44) prescribes a method for determining the inverse Laplace trans-
form of each element of $~s) = (s I — A)~~, thereby determin ing ~ (t).  The matrix
form of 4 ( t)  can be established by expanding (5.37). We obtain

n ’~n 0/

i(s) = � ~~~ 
1 

, (5.45)
j = t  1 =1 ( s - A 1) ’

where / = 1 , 2 , . . . , n ’~~ n. The inverse Laplace transform of (5.45) gives

~~~~ ~/ i—i
4 (t)  = e~~ = 2 ~~~~~~~~~~~~~~ (5.46)

1=1 ,= i  (z I) .

where (5.44) served as a guide to establish the general form of 1(t).
To illustrate the use of equations (5.37) through (5.44 ) consider the in-

verse Laplace transform of

-2s 4 -  I l s - 16F(s) = (5.47)
+ 1) 2(s + 2)

LI 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
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For the term ~2 the multiplicity a1 is 2. The respective coefficients V’11 deter-
mined by (5.40) are V’11 = 2 and Y21 = —3. Similarly, the coefficients V’,1 associ-
ated with the degenerate eigenvalue of (s + 1)2 are Y12 = 0 and Y22 = 3. From
(5.38) or (5.39) the term (s + 2) has the coefficient Y13 = —4. Thus (5.47) can
be written in form (5.37) as

-) 3 3 4
F~s) = — — + — (5.48)

$ ~2 ( s + l ) 2 (s + 2)

By (5.44) the inverse Laplace transform of (5.48) is

f ( t )  = 2 — 3t + 3te 1 — 4e 2 (5.49)

Clearl y,  the inversion of the n X n matrix $(s), using the above method , requires
,~2 elemental inversions.

5.3 FIXED DISCRETE-TIME SYSTEMS: TIME DOMAIN ANALYSIS

A linear discrete-time system of fixed form i~ qoverned by a system of difference
equations of normal form 1 , from (2.26) and (2.27),

x(k+l) = Ax(k) + Bu(k) (5.50)

y(k) = Cx(k ) + Du(k) (5 .51)

where the index k = 1,2 oo prescribes the discrete-time sequence and the
matrices A , B, C and D are constant. The solution to (5.50) may be found
directly by recursion. Substituting in (5.50) discrete values of k we ~iave

x( 1) Ax(0) + Bu(0)

x(2) Ax(l) + Bu(l)

A2 x(0) + ABu(0) + Bu( l )

x(3) = Ax(2) + Bu(2)

= A3x(0) + A2 Bu(0 ) + ABu( l) + Bu(2)

k-i
x(k) = Ak x(0) + 2 At Bu(k — Q —  1) (5.52)

5=0

I . See , for example, Freeman , H., Discrete-Time Systems , Joh n Wiley and Sons , New York
(1965).

III 
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or

k — I

x(k) = Ak x(0) + � Ak —E—l Bu(Q) (5.53)
5=0

The fundamental matrix for a discrete-time system becomes , from (5.52) or
(5 .53) ,

c1 (k)  = A” (5 54)

where

Ak A 1 A2 . . .  Ak

A 1 A2 = . . .  A,, = A (5.55)

In terms of the fundamental matrix ~ (k)  the state equation (5.52) or (5.53)
becomes , respectively,

k-i
x(k) = $(k)x(0) + ~~ ~ (~) B u ( k - Q - l )  (5.56)

5 0

or
k —I

x(k) = 4 (k)x(0) + 2 ~ (k- t -  l)Bu(k)  (5.57)
Q 0

Substituting (5.56) into (5.51) the output equation beconses

k-i
y(k) = C4 (k)x(0) + � Cct (Q)Bu (k — t -  I)  + Du(k) (5.58)

5=0

‘An alternate expression for the output is readily derived using the state vector
fo rm (5.57). Solutions (5.56) and (5.58) are the discrete-time analogs of ( 5 . l  I)
and (5. 1 2), respectivel y. The corresponding formulation of the discrete-time
state equations is given in Appendix C.

5.4 FIXED CONTINUOUS-TIME SYSTEMS: DISCRETE INPUTS

In many continuous-time systems the input is often a samp led signal . thus char-
acter izing the input as discrete. There are two kinds of sampled si gnals (and
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associ ated discreteness) we will  consider: ( 1 )  tile piece-wise c ( Inst an t  si gnals
w isere t he sam pl in g function is a pulse of constant amp litude over a t ime interval
(t k. t k÷ t  ) ‘~~~

u(t) = u(t k ) tk < 
~~ 

t~~~~ 
( 5 . 59)

and (2 )  the impuls e -m odulated signal represented by a modulated de l ta - func t ion
ser ies

u(t :r k )  = �~
‘ u ( r ) / i ( t —  tk) (5.60)

,~ =1)

Signals having the forms of (5.59) and (5.60) are respectivel y depict ed in Figs.
5. 1 a and 5. ! b. In generating u(t k )  a ze ro order holding circuit of sorts is imp li ed.
The various tk are arbitrary but satisfy the condition tk+i > tk

From previous discussions the response of a continuous-time system to
sampled inputs can be readily determined . In fact, it can be determined with
considerably more ease than would be required to determine the response for all
time. The continuous-time system is governed by the dynamic equation

x = Ax + Bu

wherein the solution is

x(t) = ~ O) x (t o)  + 
j ~~~(t -

~~~~~~~~~~ I~( t~~ )

_ rH

~ 

I :. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~l ~2 - - - ~k + l  

Figure 5.1 Samp led signal.

~ ~~~~~~~~~~~~~~~~~~ ~~~~
‘i
~~~::~~ ~~~~~~~~ 



SOLUTIONS TO THE CANONICAL EQUATIONS 81

Let the input be the sampled signal of (5.59). It is a signal of constant amplitude
over a prescribed time interval . Then

x(t) = ~ (t)x(t o) + 
j ~~ (t - ~)Bu(t k)d~ 

(5.61)

Now let the input consist of a series of constant vectors of form (5.59). Then at
time tk + r. where 0 < r  ~~~ tk+1 — tk for each time interval (tk,tk+1). we have

rtk+T

X( tk + r) = 4 (r) x ( t k)  + J I ( t ~ + r - ~)B u (tk)d ~ (5.62)

If the “staircase ” input changes uniformly at intervals tk = kT equation (5.62)
becomes

,.,kT+r
x ( k T + r)  = ~ (T) x (kT)  + J 4~( k T+ r  ~)Bu(kfld~ (5.63)

kT

Fina lly, f o r r T

kT+ T
x (kT+ T)  = 1 ( T ) x(k T )  + 

J 
4~( k T+  T-  ~)Bu (kT) d~ (5.64)

kT

Clearly (5.64) can be written as the difference equation

x ( k + l )  Ax(k) + ~u (k) (5.65)

where

A = ~ ( T )  = ~~ (5.66)

B = 
J 

t (T-  ~)d~ (5.67)
0

Thus. the continuous-time system governed by

x = Ax + Bu

II_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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having as tile input a piece-wise constant signal is equivalent at samp ling instants
to the system governed by t h e  difference equation (5.65).

To illustrate sonte of the theo ry developed consider a simple system
governed by the differential equation

(
~ 

+ 5~~ + 4)y(t)  =

Let the input to the system be a continuous-time sign al in one case , and in
another case let it be the sampled signal u( t )  = 2k for kT < t ~ (k + I )T, where
k = 0, 1,2 o~ From equation (4 .19) the system matrices are

ro ‘ 1 ro
A = J  I B 1

L—4 -5J LI
C = ( I 1  D 0

The state transition matri x 4(t )  is the inverse Laplace Transform of (SI — A) 1 
-

where
r s  1 1_i

(sI - Ay~ IL-~ 
s+5J

[s+5 11 I
j -4 sj(s+4)(s+l)

By (5.39) and (5.44) we can evaluate the inverse transform of each polynom ial
element of the above matrix givin g

— A)~~}

— ~~~ 

4e 1 — ~~~ e 5 — ~~~
— 

3 L_4(e t - e~~~) _e t + 4e~~

For the case of a continuo us-time input the state vector is , from (5. 10),

~ I 
4e~ 

— e 4 e t — e~~t 1
x(t) = 

L4~e_t — e 4t) ~e~t + 4e~~ ti 
x(t 0)

I ~ I e (
~~t) - e 4 (t_ l)  1

+ 

~~~~~ 
+

I ’
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For the staircase input u(t) = 2k equation (5.64 ) specifies the state vector as the
difference equation

I I 4e T_ e~~T e_ T_  e~~n1
x(kT + T) = 

~L_4 e_ T_ e~~T) _e_T +4e~~T] 
x (kT)

e T + 1e 4T1
4

3L e T+ e ~~T ]

which is of the form

x ( k + l )  = Ax(k) + Bu(k)

Hence , by (5.56) the state vector for the continuous-time system having a stair-
case input is

x(k) = Ak x(O) + ~~~~~~~~~~~~ 2k 5 1

where A and ~ are determined by equations (5.66) and (5.67), respectively.
We next conside r the continu ous-time system wherein~ the input is the

series of impulses represented by (5.60). Referring once again to state equation
of a continuous-time system we have

x( t) = 4(t)x(to) + j  c~I(~’ -. 
~)Bu(~)d~

At ti me tk + r, where 0 < r  ~~~ tk+1 — tk, we have on substituting (5.60) int o the
above state equation

x(tk + r) = 4 (r)x(tk) + c1(r)Bu(tk) (5.68)

Equation (5.68) is the state equation of a continuous -time system where the
input is a series of impulses occurrin g at times tk (k = 0, 1 .2 , . . .  °°). If the im-
pulses occur at uniformly spaced time intervals where k+1 — tk = T, equation
(5.68) gives the state equation for this condition as

x(kT + r)  = ‘4 ( r) x (k T)  + 4 ( r) B u (k T)  (5.69)

-

‘.
- - -  ~~~
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84 AN INTRODUCTION TO THE TH EORY OF L INEAR SYSTEMS

where 0 < r ~ T. Lastl y, for r = T we have as the discrete-time state equation for
‘a continuous-time system

x(kT+ T) = 4(T)x(kT) + 4 ’(T)Bu(kT) (5.70)

5.5 FIXED DISCRETE-TIME SYSTEMS: z DOMAIN ANALYSIS

Sampled data systems can be considered as continuous-time systems operating
on discrete-time functions. The transform addressing discrete-time systems is
introduced for the same reason that makes the Laplace transform useful in the
study of continuous-time systems. Procedures similar to analyzing continuous-
time systems in the frequency domain will be followed to anal yze discrete-time
systems in the z domain (where z is a complex variable).

The transform of a discrete-time function f ( k )  is a power series in z~~ .
The coefficients 1(k) are the amplitudes of the discrete-time signal. We have

~ {f(k)} = ~~ f ( k ) f k (5.71)
k=-=

where ~~( f ( k ) }  is the transform of 1(k) .  For discrete-time systems those values
of 1(k) where k <0 are of less interest than where k >0. The discussion to
follow Will , therefore , center around situations of positive values of k. Accord-
ingly, our consideration of (5 .7 1)  will be bound by the values k = 0,1.2,...,

From Appendix D the transform of the first forward difference equa-
tion is

~~~~j ~k)} = ~ f f ( k + l) - f ( k ) }

= (z — t) ~~{ f( k )}  — z f (O ) (5.72)

where

~~f(k)} = ~~f(k)z k = f(0) + f(l)z ’ + f (2)z 2 +
k=0

~~ f ( k + 1) }  = f( l)  + f(2)z~ + f(3)z 2 + . .. = zI ~~{ f ( k) } +f ( o) j  (5.73)

The characterization of a linear discrete-time system of fixed form was speci-
fled earlier by equatio ns (5.50) and (5 .51) :

~ 
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x(k+l) Ax(k) + Bu(k)

y(k) Cx(k) + Du(k)

Taking the ~~
. transform of both sides of the above normal equations we have .

using property (5.73),

z X ( z )  — zx(0) = AX(z ) + BU(z) (5.74)

Y(z ) = CX(z ) + DU(z) (5.75)

where

U(z ) = ~~(u(k)}

X(z ) = ,~ fx(k)}

Y(z) = ~~{y(k)}

Solvi n g (5.74) for X(z) we have

(zI — A)X(z ) = zx(0) + BU(z)

X (z)  = (zI — A)~~zx(0) + (21 — A)~~BU(z) (5. 76)

which , when substituted in (5.75), gives the discrete-ti tne output as

Y(z) C ( z I - A)~~zx(0) + [C(zI -A) ~~B + D 1X(z )  (5.77)

Referring to state equations (5.56) and (5 .58)  the .~ transform of the output
equation (5.58) gives

r - Y(z) = C4(z)x(0) + [C~ (z)z ’
~ B + D]X(z) (5.78)

wh ere

~ (z)  ~~~{4i(k)} = ~~ A”} (5 79)

Comparing (5.78) with (5 .77) we see that

~~(z) = ( z I — A ) ~~z = ( I — A z ~~)”1 (5.80)

~ 

~~~~~~~~~~~~~ ~~~ . :~ .~~~~~~~~~~~~~~~ 4
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Result (5.80) can also be derived directly front the definition of the ~~
- t r ans fo rm

f or  Ak :

~~~~{Ak } =

k =0

= ( z I — A ~
-1 z (5. 81)

The zero-state response specified by (5.78) is

Y ( z )  = 1C6(4z _ I B + D J X ( z ) (5.82)

Hence , the transfer function matrix for a discrete-time system is

H C~ (z) z l B + D (5.83)

Proceeding in the same manner as in Section 5.2 the inverse transform
operator ~ (z)  can be written as

-. z adj ( z I— A )
4’(z ) = z(z I — A)’ t = 

zI — Al

zB(z)  zB(z )
= _____ = —-- (5.84)z I — A l  p (z )

where B(z) and p(z ) are polynomials in z. Rep lacing s with z in (5.26) and (5.32)
the ratio ~ (z) can be evaluated as prescrib ed by (5.3 1) through (5.35). Rep re-
senting B(z) and p(z), respectivel y, as

B(z ) = Boz
k_ l 

+ B 1z~~
2 + . . .  + Bk_ 2z + Bk_ I

and

p(z ) = + a1z ’t  + a2z~’~
2 + . . .  + +

Fr
equation (5.84) becomes

B0z~~ + B1z~~
2 + . . .  + Bk 2 2  + Bk _ i

~ ( z)  = k I k 2 (5. 85)
z - 

+ a 1z — + . . .  + a~~ + at:

L~i~ .±~~-~~~~~± T ~~~’~~1 - -  - -  --_ -
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Clearing the fraction we have

(zk +aiz 1
~
_ l +a2z~~

2 + • . .  +a~z +ak ) l

= (B0Zk_t + B!zk_2 + ... + Bj~
_
~z + Bk_ lXz l — A)

= B0z’~ 
— BoAzk_t + Blz

k_ 1 + ... + B~_j z - Bk_ l A

Equating the coefficients of like powers of z gives

B0 = l  at — t r A

• B 1 = B0A + au a~ 
= -4t r (B !A)

B2 = B 1A + a2 1 a3

Bk_ I = Bk_ 2 A + ~k_ l l ak_ I ~~--j tr (Bk_2 A )

0 Bk_ I A + a~ l tr(B,~_ i A) (5.86)

which results in the algorithms

a = — - ~-tr(Bj _ 1A) (i 1,2 k) (5.87)

B = B _ 1A + a l  (1= 1,2 k — I )  (5.88)

The most commonly used methods to determine 4(k),  the inverse trans-
form of (5.84), include inversion by partial fractions , inversion using the inver-
sion integral , or inversion by long division. Each of these techni ques requires
addressin g the individual elements of the matrix ~ (z). Consequently . the tech-
niques are laborious. To determine the signal element fik) corresponding to each
element f iz)  in $(z) it becomes necessary to expand ftz) into a power series in
z~

1 . The expansion coefficients f(k ) are the amplitudes of the discrete-time
• signal .

Inversion by partial fractions involves factoring and looking-up in an
appropriate table the discrete-time function corresponding to the transform to
be inverted. Appendix D contains a typical conversion table , which of course ,

~~~~~~~~~~~~~~~~ •
~ i-~~:• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~—--~
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can be expanded considerab ly. The tas k of factoring the ratio of two poly-
nomials was discussed earlier. The associated z-formulation takes the form of

equations (5.36) through (5.40).
A more elegant technique, which also involves factoring, is use of the

inversion integral

f ( k ) = _!_ lCf(z)z k_ I dz (5.89)
2ir/ j

From the calculus of residues the evaluation of (5.89) results in

f(k) residues of f(z)z ”~~ at its poles
within circle of convergence of f ( z) .  (5.90)

For a pole at z = A, of multip licity ü~j the residue of f ( z ) z 1 ’_ 1 is given by

~ 
} = lim 

~~~~ 

(z - x,)aIf (Z)~~
I (5 .9 1)

A third method of inversion of the transform applies when 1 (z)  is a
rational function. Both the numerator and denominator can be expressed as
polynomials in r 1. Using long division the numerator is divided by the denorni-
nator giving a series expression in powers of z~~. The numerical values of the
coefficients are the 1(k). This method is particularly useful when tables of
transforms or the inversion integral cannot be used. However , a general expres-
sion for J (k) ,  as can be obtained by the other two methods , is not readily
achieved through the long division method.

To illustrate the above three inversion methods consider the following
example . We want to determine the inverse transform of the simple complex
function

2z2 — 4 z
f ( z )  =

z’— 4 z + 3

by each of the three methods.
(1) Partial Fractions. Factoring f ( z )  we can write

2z 2 -4z
- 4z + 3

~~~~~~~~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~V
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= 
2z (z - 2 )

( z—  lXz — 3)

— +z — l  z — 3

From Appendix D:

f(k) 1 + 3 k

(2) Inversion Formula. The function f ( z) z ’ 1  has simple poles at z = I and
z = 3. There is no pole at the origin. Thus from (5.90)

f(k) = 
2z2 _ 4 z

~ k_ 1~ + 2z 2 -4 z k_ 1~

(3) Long Division. Expressing both the numerator and denominator of 1(z) as
polynomials in z~~ we have

2 -4 z 1
f(z)

l — 4 z 1 + 3 z 2

The long division gives

2 + 4 z 1 + l0z 2 + 28z 3 + 82z~~~+ ...
1 — 4r 1 + 3z 2 ) 2 —  4z 1

2 — 8 z ~~ +6z 2

f(0) = 2 = 1 + 3 ~
f ( 1 ) = 4 = l + 3

f(2) = 1 0 =  1 + 3 2

f (k) = 1~~~3k 

~~~~~~:: _ _ _ _ _ _  ~~~~~
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5.6 FINITE-STATE MARKOV SYSTEMS: INPUT-FREE

The analysis considered thus far has been deterministic 1 in nature , i.e., it was
assumed that the system states at time t could be determined with certainty .
This certainty was a manifestation of exact knowledge of the characterization
matrices , the state at some initial time t0, and the input applied over the time
interval (t 0, t) . For those systems, such as large scale systems, where the charac-
terization matrices are not known exactly, it can be expected that the system
state and output can only be described statistically—even though the input and
initial state are known exactly. These systems are called stochas tic systems. They
are characterized in terms of probabilities of being in a specific state at some
given time , and in terms of state transition probabilitie s associated with each
discrete state. If the discrete states that the system can assume are finite in
number then such systems are f inite-state stochastic systems.

In formulating the probabilistic descri ption of finite-state stochastic
systems we define the following quantities: Let the probability that the system
is in discrete state / at time (k + 1) be p 1(k + 1). At an earlier time k the system
can be in any discrete state i with probability p 1(k) . For each state i there
corresponds a state transition probability ~~ that the system will transition from
state i t o  state I. We stipulate that is independent of the past history of the

- 

- system , i.e., it is independent of how the system arrived at state / from state i.
(Systems that possess this prope rty are known as Markov systems.2) Thus , the
probability that the system will be in state / at time (k + 1) is

p,~k + l )  = ~~~11(k)p 1(k ) / = 1,2 n (5.92)

where n is the total number of discrete states the system can assume. (The index
n should not be confused with our previous n used in establishing the order of
the differential equation governing the continuous-time system.) Equation
(5.92) can be written in vector form as

p ( k + l )  = 41(k)p(k) (5 93)

1. For the sake of completeness our pre vious formulation assumed that all defined quanti-
ties were readily calculable . It must be recognized that this is true only for simple cases.
For complex systems these quantitie s are not readily ascertained and must be treated

4 statistically.
2. For a more complete discussion of Markov chains see , fo r e xa m ple , Feller . W., An

I ntroduction to Probability Theory and Its Applications. Vol. I , 3rd Edition. John Wiley
& Sons , New York (1968).

l.a - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _
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where p is an n-dimensional state-probability vector and 4) is an n X n state
transition probability matrix. Clearly , from (5.92) and (5.93) 4) is of the form

‘P12Q) ... pln(k)1
4) (k) = I (5.94)

L~1~ 
p~2 (k)  ...

where must satisfy the following probability conditions:

~ 0 for all i,j (5.95)

= I for all i (5.96)
/ = 1

If the elements are fixed then (5.93) becomes

p ( k + l )  = 4)p(k) (5.97)

The derivation of (5.97) was based solely on probabilistic reasoning; inde-
pendent of the linear , time-invariant conditions of Chapter 3. Howeve r , formula
(5.97) which describes a zero-input probabilistic system , is of the same form as
state equation (5.50), which describes a zero-input , linear , time-inva riant system:

x(k + l) = 4)x(k) (5.50)

Moreover , the system described by (5.97) need only be a finite-state Markov
system. The likeness of (5.50) and (5.96) suggests that a class of nonlinear
systems , where the states are represented in terms of probabilities , is governed
by linear equations. Therefore , the solution of (5.97) could be obtained by
following the methods of Sections 3 and 5. By direct recursion (5.97) becomes

p(k) = 4~’p(0) (5.98)

Hence , for input-free Markov systems the state probabilities are completely
“determined” by knowing the transition probabili ty matrix and the initial state
probability vector. The evaluation of (5.98) is best carried-out in the z domain ,
wherein the ~ transform gives

zP(z)  — zp(0) = 4)P(z)

P(z) = (I - 4)z 1)~~p(0) (5.99)



~
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We demonstrate the use of (5.99) through simple examples below.
In general Markov systems can be represented graphically by state dia-

grams (signal flow graphs) as shown in Fig. 5.2. The nodes are the states i and
the directed branches are the state transition probabilities ~p11. The states can be
grouped into mutually exclusive state sets , whereby the system can change from
every state to eve ry other state within each state set. Those state sets that once
entere d can neve r be left are called ergodic sets . Their associated states are
recurrent states . Those state sets that once left can never again be entered are
called transien t sets. Generally, Markov systems can have many ergodic and/or
transient state sets as shown in Fig. 5.3. States I , 2 , and 5 , 6 comprise ergodic
sets whereas states 3, 4 are a transient set. Each set is mutually exclusive of the
other. As a minimum a Markov system must ha~’e at least one ergodic set. Such a
system is an ergodic system. For a system having more than one ergodic set but
no transient sets the state sets are said to be disjoint . The system can be sepa-
rated into a number of independent subsystems , one for each ergodic set.
Further , if an ergodic set has at least one state such that the system must return
to this state periodically the ergodic set is periodic , otherwise it is regular. We
shall expand the above statements through the examples below.

Consider the simple system of Fig. 5.4 , which has an ergodic set but no
transient set. We desire to evaluate the probability that this system will transi-
tion to states 2 or 3, give n that the system is in state I at time k = 0. The
transition matrix for the system of Fig. 5.4 is

H ~ 2l

~ I I ~ 22 ~~~~ 
~~~~~~~~~~

~I2

Figure 5.2 Two-state Markov system. Figure 5.3 Six-state Markov system.

H’

Figure 5.4 Simple ergodic system.

:. :-... -~~~~~ ~~~~~~~~~~ -~~~~
- -

~~~
--

~ ~~~~~~~ - 
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1 1 1
2 3 8

$ 1 1 3
2 2 8

1 1
0 6 2

where the transition probabilitie s satisfy conditions (5.95) and (5.96). Given
that the system is in state 1 at time k = 0 the initial state probability vector is

~(~) =

From (5.99)

P(z) =

1 —  
~~

z ’ ~~~~~ ~~~~~~~~~~~ 

— l

= ~~~z ’1 1 — 

~~~~ 
— . z ~~ o

0 ~~~~~ l _ 4 z”l 0

Evaluating the inverse matrix by cofactors we have

i _ z +~~~z_2 !z_L. i. z 2 ! gz~~ +4z
_2

~ z) U _ ~~~
_
~ 

~ z _ ~~ z_2 l _ z ~~ +~~z_2 ~~z
_ 1 _

~~ z_2 0

j~~z
_ t  

~kz l - 
1~

z 2 I - z~ + ~~ z_2 0

where the determinant

1- $z~ I I - + ~~~z
_2 - i~~3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _
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Hence,

3
I — + _z _2

rP l (z) 1 16

P(z) = P 2 (z
) j  I l — ~ ’z~’ I 

-4z ’ 1

LP3(z )
12

As was mentioned earlier there exists for small systems a variety of ways in
which the above matrix can be evaluated. For discussion purposes we shal l
employ the methods of long division and factoring. The method of long division
gives

r 1 + .5625z~~ + .4831z 2 + .4379z 3 + .4l4lz~~ + .4074z 5 +

P(z) 0 + .5z~~ + .5381z 2 + .5492z 3 + .5546z 4 + .5574z 5 + . . -

Lo + 0 + .0833z 2 + .1302z 3 + . l548z~~ + .1676z 5 +

where the decimal values are rounded off at the fourth place . From (5.73) the
coefficients of z’~’ give the probability amplitudes p.(k) directly; thus we have
the discrete-time histories of the three components of p(k):

p 1 (0) = I p2(O) = 0 p 3 (0) = 0

p1(l) = .5628 P 2 ( 1)  = -~~ i-30) = 0

p1(2) = .4831 p2(2) = .5381 P 3 (2) = .0833

= i’2(~
) = .5492 P 3 (3)  = .1302

p1(4) = .4141 p2(4) = .5546 p3(4) = .1548

i’i(5) = .4074 p2(S) = .5574 p3(S) = .1676

I
The above state probabilities as a function of discrete-time are shown graphically
in Fig. 5 .5.

We observe that as k becomes larger the probabili ty of the system remain-
ing in state 1 decreases sharply and approaches a probability level of 0.4. Knowl-
edge of the initial state (k = 0) becomes less significant with time. The probabil-
ity at time k>> 0 of the system being in a state other than state 1 is 0.6. In fact

p :~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I 0 -

Figure 5.5

the system is in state 2 with probabili ty greater than 0.5 and in state 3 with
probabili ty 0.16. (The fact that the total probabili ty exceeds uni ty is attributed
to rounding-off of decimal quantities in the calculations.)

As an alternative method for evaluating the matrix P(z ) of our example
- 

_ 
system we employ the method of partial fractions. The system determinant can
be factore d as

Il — 4)z ’I = 1 — + ~7~z_2 —

= z 3(z - lX z - .S22Xz - .0398)

thus

2

P(z) = i-z-l - 1z 2
(z -- lXz — .522Xz — .0398) 2 4

-
‘

12

~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~ ~~~~~~~~~~~~~~~
‘ ‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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The inverse of P(z)  gives the components of the state probabilit y p (k)  as

p 1~k) = ( 1)k =o + [,4 l 0+ .2680(.522) k + .3 1 66(.0398)k ]k>o

p2( k) = (.5494 — .0574(522)” - .4874(.0398Y~]k >o

p 3 (k )  = (.1819— 3623(522)k _ .l809(.0398)” ]~ >o

A few typical values of the components of p(k)  are

p 1 (O) = 1 P 2 ( O) = 0 p 3 ( O)  = 0

p 1(l)  = .5625 p 2 ( 1)  = .5 p 3 ( l)  = 0

= .4835 P 2 (2)  = .5331 p3(2) = .0835

= .4481 P 2 (3)  = .5413 p3(3) = .1314

= .4299 p2(4) = .5452 p3Qt) = .1551

= .410 p2(oo) = .5494 p3(oo) = .1819

which compare favorably with the results achieved by the method of long
division.

Analysis by partial fractions provides for system insight not readily attain-
able through analysis by long division. We have seen by both methods that the
components of the state probability vector p (k )  must not exceed unity.  Since
1p1(k)I ~ I for all i and k it follows from the method of partial fractions that
none of the eigenvalues of 4) can have a magnitude greater than unity. Thus all
roots of magnitude less than unity contribute transient terms which vanish as
k —

~ ~~~. Since eve ry Markov system must have at least one ergodic set it also
follows that every Markov system must have at least one root equal to unity. In
fact the characteristic equation

I I — 4)z~~I = 0

of a Markov system will have as many roots equal to unity as there are ergodic
sets in the system.

p  - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
_ _ _ _ _ _ _
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5.7 TIME-VARYING CONTINUOUS-TIME SYSTEMS: TIME DOMAIN
ANALYSIS

For time-varying linear systents the differential equations to be solved are

~c(t) = A(t)x( t )  + B~ )u(t)

y( t)  = C(t)x(f) + D(t)u(t)

The homogeneous form for the dynamical equation is

x(t)  = A(t)x( t )  (5.100)

We begin the solution to (5.100) by assuming that the components of x(t) are
linearly related to the components of x( t 0).  Using definition (3.35) this relation-
ship for zero input is

x1 (t) L~,11(t ,to)x 1(to) (5. 101)

wherein the initial conditions are established as

x’(t0) = 0 for i � j

x,(t0) :�: 0

Thus (5. 10 1) represents the solution for an arbitrary state by superposition of
the initial conditions . In matrix form (5.101) becomes

x(t)  4) (t , t0) x (t o)  (5.102)

Returning to the dynamical equation (5.100), if it is of first order we can
write in scalar form

— = a(t)dt (5.103)

a~ :. -
- ‘

~~~~~~

-‘

~~~~~~~~~~.:~~~, 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~
‘. -



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

98 AN INTRODUCTION To THE THEORY OF L I N E A R  SYSTEMS

Integrating both sides of (5.103) from to t o t  gives

ln-~~~- = f a ( ~)d ~x(t 0)  
~

x(t) = x(t o) exP(f a(~)d~
) 

(5.104 )

By (5.104) it is inferred that for first order systems the fundamental matrix is

~(t, t0) = exp 
(f

t
a(~) d~

)  
(5.105)

This imp lies that for the initial conditions we let

x1 (t) = ~ 1(t , to)x 1(t 0)

x,(t o)  = 0 for i � /
x1(t0)  =

Extending (5.105) to htghes order systems we have

$(t, to)  = exP (fA(~)d~
) 

(5.106)

Relation (5.106) is valid only if A(t) and the integral equation commute , i.e., if

A(t) j A(~)d~ - ~~~~~~~~~ = 0 ( 5 .10 7)

Clearly, for the case where A(t) is the product of a constant matrix and a scalar
time function, such as

A(t) =
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whe re

j A (~)d~ A’f f (~)d~

then identity (5.107) holds. Thus , we let

$(t , t0)  = exp(A’J f(~)d~~ (5.108)
\ t O /

In general , however , it is not possible to obtain an anal ytic expression for the
fundamental matrix of a time-varying linear system. It is primaril y of conceptua l
interest.

To find the complete solution to the dynamical equation we again refer to
the method of variation of the parameter. Proceeding in a m anner analogous to
that of the previous section the solution x(t) is assumed to have the form

x(t) = 4) (t ,t0) f (r )  (5.10 9)

where f(t) is to be determined. The time derivative of (5.109) is

• 
- 

x(t) = i(t ,to) f ( t)  + 4)(t.to)f(t)

which , when substituted into (2.26), gives

[~i( t ,t0) 
— A(t)4) (t ,to) ] f ( t)  + $(t , to)f(t)  = B(t)u(t)

The expression in the bracket is the homogenous equation and is identically
zero , leaving

$(t , t0)f(t) = B(t)u(t) (5.1 10)

Multiplying both sides of (5.110) from the left by the inverse of 4) (t , t0) and
integrating we obtain the expression for f ( t ) :

f(t) =

~ 

_ _ _ _ _
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Thus, solution (5.109) can be written as

x(t) =

= $(t ,t0 )J 4s— ’ (~~t )B(~)u(~)d~

- 

-
, 

1- ~~~~~~~~~~~~~~~~~~~~~~~~ (5.111)

Evaluating the above equations at t = to results in

x(t0) 
J

(O
4)(tt )$..l(~ to)B(~)u(~)d~

= J 4 ) (~,t0 )B(~)u(~)d~

where , from (5.3), 4) (t 0, t0) = I. Further , it can readil y be shown that

4) ~~(~,t0) =

Thus , solution (5.111) becomes

x( t)  = $(t ,t0)x (t ~ ) + J 4)(t ,t0 )4)(t0,~)B(~)u(~)d~
t~

= 4) (t ,t0)x(t 0) + ~~~~~~~~~~~~~~~ (5.1 12)

From (2.27) the input .output -state-r elationship for the time-va rying system is

y ( t )  = C(:)[4)(r~t0)x( to) + f $(t~~)B(E)u(~)d~
] 

+ D(t)u(t) (5.1 13)

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
____________
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5.8 TIME-VARYING DISCRETE TI ME SYSTEMS: TIME DOMAIN
ANALYSIS

The normal form of the equations governing a linear t ime-varying discrete-time
system is

x(k + 1) = A(k)x(k ) + B(k)u(k ) (5.1 14)

y(k) = C(k)x(k ) + D(k)u(k) (5 .115)

As shown before the solution to (5.114) can be found directly by recursion :

x( l) = A(0)x(0) + B(0)u(0)

x(2) = A( l)x( l)  + B(l)u(1)

= A(l)A(0)x(0) + A(l)B(0)u(0 ) + B( l)u (I)
(5.116)

For k > Q we define

k—l
4) (k ,Q) = H A(i) = A(k — l)A(k — 2 ) . . .  A(Q + l)A(Q) (5.117)

j= Q

and

$(k ,k) = I (5.118)

Thus the equation of state for a non-stationary, discrete-time system can be
written as

k —I
x(k) = 4)(k ,O)x(0) + 2 4) (k ,Q + 1) B( Q) u( 2) ( 5 . 1 1 9 )

Substituting (5.119) into (5.115) the output expression becomes

k— l
- 

- 
y (k )  = C(k)[$(k,0)x(0) + 2 $(k,Q+l)B(Q)u(Q)] + D(k)u(k) (5.120)

For zero initial conditions the system output is

k—l
y( k) = ~~ C(k)$(k , Q+ l)B( Q )u ( Q ) (5. 121)

t=o

Ia ~~~~~~~~~~ :~~~~~~~ ~~~~~~~~~~~ -
~~~~~~~~

--  
~~~~~

_ — ---
~~~~~~~~

--“-
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From our previou s definition of the transfer function matrix H , where

y H u

the weighting sequence matrix H for non-stationary systems has the form , from
(5.12 !), 

-

H(k , k — Q )  = C(k) $(k , Q + 1)B ( Q)  (5. 122)

From (5.1 17), for k~~m ?R ,

k —I k—I rn—I

flAa) = HA(i)HA(n) (5.123)
i= Q i rn n Q

Thus, the expre ssion for 4’ becomes

$(k,Q) = $(k ,m)$(m,Q) (5.124)

Fork = Q equation (5.124) gives

4) (k ,k)  = $(k ,m)$(m,Q) = I

For k < Q we define

4’(k,Q) = A ”(k)A”(k +l). . .A ’( Q — l )  (5.125)

Provided the inverses of A(k) exist we conclude that

4 ’(m,k).  4) ~~(k.m) (5.126)

Hence, the weighting sequence matrix (5.122) can be written as the product

H(k ,k — ~
) = H(k)H(Q) (5.127)

whe re

H(k) C(k) $(k ,0) (5.128)

H(Q) = 4’(0,Q+l)B(~) (5.129)

Ia —. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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6
Controllab ility , Observability
and Stab ility

6.1 NOTATION

In certain analytical problems involving the scalar product of two complex
vectors the order of the vectors in the scalar product is important. To highlight
this importan ce and track the ordered vector pairs we adopt the Dirac bra -ket
(or (.1.>) vector notation. However , as the need arises for clarity or brevi ty we
will occasionally revert to the original notation .

In general for any two complex vectors x and y belong ing to the same
vector space their scalar product may be such that

x - y � y • x

or in Dirac notation

(x lv )  * (y lx )

103
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Since the absolute value of the scalar product is independent of the order of the
factors we can write

(x lv ) = (y lx>*

(x l Xy ) = X(x ly )
(Xx iv ) = X*(x ly ) (6.1)

where X is a constant , not necessarily real , and the asterisk denotes the complex
conjugate.

Consider an n X n Hermitian operator A having distinct eigenvalues
X1, X2 X~ . Let the associated ket (or right) eigenvectors be Iel > , 1 e2 ), ..., lea >.
The corresponding eigenequations can be written as

- 
Ale , ) = A le1> i = 1 , 2 n (6.2)

where each le ,> is defined by the normalized basis vectors (1e1, 2e1 “e1), i.e.,

ej> = ( ‘e1, 2e~ ~e•) (6.3)

It can be shown that the eigenvectors lel > , 1 e2 > e~> are linearly independent
and therefore , also form a basis for the n-dimensional space. Hence any vector in
the space spanned by 1e1) (1 = 1,2 n)  can be written in terms of the eigen-
vectors . For the right vector Ix > we can therefore write

lx> = ~~ x~le1) (6.4)

The respective bra or reciprocal basis vectors corresponding to those of
(6.3) are (e i l , (e21 (e~ l. Together the two sets of basis vectors satisfy the
orthonormality relation

(e11 e1) = (6.5)

For any two specific vectors Ic1) and (e11 the term

Ic1) (e1I

— -~~~~~~ ~~~~~ 
-
~~~~~~~~~~~~

-
~~~~~~~ - 
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is called a dyad . Provided they have been normalized to satisfy condition (6.5)
the sum of the dyads is the identity matrix , i.e.,

E lej )(ej l I (6.6)

which is the closure relation.
Corresponding to the right vector (6.4) we can write for the left vector

- - 
(x l = �x 1 (e1I (6.7)

Using identity (6.6) equations (6.4) and (6.7) can respectively be written as

lx > = ~~~le~)(e~lx> (6.8)

(xl = ~~~(xle1)(etl (6.9)

- The scalar product of any eigenvector (e1l and lx > becomes

(ej I x) 2 (e1le, )x1 (6.10)

Essentially, the dyads of (6.6) are n X n matrices with diagonal elements
- ae,be,. Each term in the sum is a projection. Therefore , the eigenvalue problem

- - as formulated by (6.2) can be stated as one whereby for a given Hermitian
matrix operator A the associated n-dimensional vector space is decomposed into

- a complete set of orthonormal vectors such that A is a linear combination of the
;. projections (dyads). This is clearly seen by expanding (6.2), i.e., multi plying

both sides from the right by (e,I and summ ing:

— Ale,) = X, Ie, >

-

- AE lej )(e,I = ~~ X1l e,>( e,l

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..,
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A = ~~X,le,>(e,l (6.11)

Since any matrix operator A can be written as its identity

A = I A  (6.12)

it is apparent from (6.6) that matrix operators can be expanded in terms of their
respective eigenvectors. Thus the following identities are possible:

A = A � 1e, )( e,l = ~~ X,le,>(e, l (6.13)

n
= 2 -

~~
-- le, >(e, l (6.14)

i=1 I

lx> = le, >(e~lx > (6.15)

(sI - A) = 2 ( s  - X,)le, )(e, l (6.16)

n
( s I — A ) ~

1 = ~~ 1 e )(e l (6.17)
z= 1 ( s — X j )

eAt = �e Xi t lej )(ej l (6.18)

f(A) = f(X,)Ie,>(e, l (6.19)

62 SPECTRA L DECOMPOSITION

The state equations in standard form were shown to be

I ~ l*> = A ix > + Blu)

lv> = Clx > + Dlu)

~~~~~~~~~~~~~~~~~~~~~ 
-
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Their respective time-de pendent solut ions are

l x)  = $(t) [x(O)> + f e BI u( ~) > d~
] 

(6.20)

l y >  = C4)(t) lx (0)> + f e  Blu(~ ))dE~ + Dlu(t)> (6.21)

By applying identities (6.15) and (6.18) to solutions (6.20) and (6.21) we obtain
the following spectra ! decompositions :

PS P1

F Ix> = 22 e?~1 t el )(e1~x(0)) ‘

~~ f ex t ~ Iei XBt eilu (~)>d~ (6.22)
s = 1  I _ J o

n n

lv) = 22 e~1tClej >( ejlx (O )> + 22 1 eX t ( t  Cle1> (B~e~Iu(~)>d~ + Dlu(t)> (6.23)
1= 1

where Bt is the conjugate transpose of B. The scalar product

- 
. (e 1lBu(~)> = (B t ejl u(~))

applies.
From (6.22) and (6.23) two observations are readily apparent: ( I )  the

vectors (Bte, I may be regarded as “weights ” which determine the magnitude of
• the effect of the input on the change in state in the Ic, ) “direction ,” and (2) the

vector-valued , time-dependent quantities e~i t Ic1> can be interpreted as the
system modes.

6.3 CONTROLLABILI TY

The system theoretic concept of controll ability arises from the following two-
point boundary valve problem. Given an initial state I x(0)> at time zero and a

- 
- 

final state Ix) * l x(0)), determine whether it is possible to find a time r and  an
input l u >  which take the system from its initial state at t ime zero to its final

I .  Notatio na lly * = x) .

___  ~~~~2 ~~~~~~ .=4~~_ 
~~~~~ ——-~ — 
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state at time t , where t is finite. To formalize the definition of controllability we
establish for the system representation

lx> = AI x> + BIu)

ly)  = C ix> + DIu) (6.24)

and stipulate that at some initial time zero the system is in an allowable initial
state I x(0)). The system representation (6 .24) is defined ’ to be completely
controllable if there exists a f inite time t >0 and a real inpu t lu > defin ed on the
time interval (0 , t) such that

lx) = eAt [lx(0)) + f e ~~~B iu ( ~)) d~
]

The necessary and sufficient conditions under which the system represen-
tation is controllable are readily deducible from (6.22), the spectral decomposi-
tion of the state. These conditions are presented below (without proof) in the
form of the following theorems: 2

Theorem 6.1. Let the matrix A in (6.24) have distinct eigenvalues. Representa-
tion (6.24) is completely controllable if and only if for all n vectors of (6.22) the
condition

(B te~I * 0 (1= 1,2 n) (6.25)

is satisfied. (Beil = 0 for any i implies that the mode e~ cannot be excited. Hence
the representation cannot be completely controlled.

Theorem 6.2. Let A and B in (6 .24) be n X n and n X m  matrices, respectively.
Representation (6.24) is completely controllable if and only if the rows of the
matrix

e~~t B

are linearly independent on the time interval (0 , t).

1. See Zadeh and Polak , Syste m Theory , p. 244 , McGraw-Hill , New Yor k, t969 . -:
2. op. cit.

~

:A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Theorem 6.3. Let A and B in (6.24) be n X  n and n X m  matrices, respectively.
Representation (6.24) is completely controllable if and only if the n X nm con-
trollab iitv matrix Of. , where

Oc = lB AB A 2B ... A~~’B] (6.26)

has rank n.
As a test of the above conditions consider the simple system of Fig. 6.1.

We desire to establish the controllability of the system representation. By inspec-
tion we have the simultaneous equations

x 1 x1 + 4 x ~ + u

x2 5x2 + u

y x 1 - x 2

which can be written in matrix form as

— 
1 41 x~ 1

I 1 =  I + U
l.x2j 0 5 J x 2 1

lxi i
y = [1 — l i i  1÷  U

~ X 2 J

Thus the system matrices are identified as

11 41 Ii
A 1  I B 1  C=  [1 -1] D =  [I]

[ 0  5] [1

Figure 6.1

I. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~--~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~ 
- -
~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~
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From (6.26) the controllability matrix Ge is the 2 X 2 matrix

G e = I B  ABJ
[ ~

]
Clearl y, the columns B and AB of Ge are linearly dependent. Therefore Q~. doer
not have rank n ( 2). Hence , the system representation for the above exam ple is
not completely controllable. However , with a slight modification to A (i.e.,
changing the amplification of state component x2), such that

I I  51
A = [  j

the columns of Ge become linearly independent. As a result the system represen-
tation for the above example is now completely controllable. We have

[1 61
Q
c [ 1  5]

6.4 OBSERVABILITY

Change s in system state as discussed above are not directl y observable. Usually
what is obse rved is the input lu> and its detectable effect on the system output
lv) . This physical realization leads to the following definition of observabiity .
We establish the system representation as (6.24). Let the system be in an allow-
able initial state l x(0)) at time zero. And let the input at time zero be lu> w Ø.
The system representation (6.24) is def ined t to be completely observable if for
every initial state at time zero there exists a f inite time t such tha t knowledge of
the output l v)  over the time interval (0 .t)  is sufficient to de termine the initial
state l x(0)>.

A set of necessary and sufficient conditions under which the system
representation (6.24) is observable is seen from (6.23), the ~output spectral
decomposition. These conditions are presented below (without proof) in the
form of the following theorems:2

I .  op. cit.
2. op. cit.

~ 
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Theorem 6.4. Let the tnatrix A in (6.24) have distinct eigeiz values. Representa-
tion (6.24) is conzpletelv observable if and only if f i.r the n vectors of (6.23) the
condition

Cl ef ) � 0 (6.27)

is satisfied. Obviousl y, if CIe 1 > = 0 for some i. then initial states of the form
lx (0)> ale 1> would give zero outputs for zero input and these states would be
indistinguishable from the zero-state Ix> = 0. (Note that in concert with (6.25)
the system representation is comp letely controllable if and only if every mode of
its dual representation is observable.)

Theorem 6.5. Let the matrices A , B , C and D ~n (6.24) be, respective/I ’, ‘1 X n.
n X m , k X n and k X m. Representation (6.24) is com pl etely observable if and
only if the observabiity matrix Q~ , where

= [ Ct AtCt .,. (An- ’ )tCt J (6.28)

has rank n. (The dagger denotes the conjugate transpose.)
As a test of the above criteria we re turn to the simple system of Fig. 6.1 .

The matrix C is

C = l 1  - I ]

By (6.28) the observability matrix Q0 is

1 —1

I -l

Clearl y the columns of Q0 are linearly dependent and the rank of Go is less than
n ( 2). Hence the representat ion for the system of Fig. 6.1 is not completely
observable. However , with a slight modification of C (i.e., changing the amp lifi-
cation of the output x2) such that

C = 1 1  11

the columns of Q0 are made linearly independent and the system representation
is made completely observable.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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-- —
~~~ 

- .  
.-



r -

~~~~~~~~~~~~~~~

--

~~~

.-

112 AN INTRODUCTION TO TIl E TH E O R Y  OF L INEAR SYSTEMS

6.5 STABILITY-UNFORCED SYSTEM

The system theoretic concepts of controllability and observability are direct
results of the spectral decomposition of the state and output  vectors. Both
concepts appeal to our intuition. A third concept , somewhat related to the other
two and also fundamental to the qualitative analysis of dynamical systems , is the
concept of system stability . In detining stability we refer to the system state and
its behavior with time. By definition an equilibrium state is one whereby

I~ ) = 0

I x> = 0

From Newton ’s laws of motion an unforced system that  is initially in an equilib-
rium state will remain in that state indefinitely unless acted upon by an external
force , after which time one of several mutually exclusive things can happen.
Consider the external force to be an impulse. Then. ( I )  the system can be
displaced from equilibrium and , by internal properti es , returned to equilibrium
within a small time interval . In this case the state is said to be stable . (2) The
state can be disp laced a finite “distance ” front equilibriu m and remain at the
displaced position for all time. In this case the state is said to be unstable but
bounded. Or (3)  the state vector can grow indefinitel y with time in which case
the state is both unstable and unbounded.

The bounded aspects of system or state stability can be refined mathe-
matically by introducing the idea of a neighborhood surrounding an equilibrium
state. What is intended by a neighborhood in this instance is a finite , fixed ,
arbitrarily small displacement e in the t0 time plane which surrounds the end-
point of the equilibrium state vector x~ (Fig. 6.2). We assume that the system
output is the state and that the equilibrium state in question is the zero-state
lx ) = 0 = 0. According ly, we define the concept of stabili ty of the zero-state or
zero-input stability . Roughly, the zero-state Ix > = 0 is stable if for every il litia l

e~

plane

Figure 6.2 Neighborhood surrounding an equilibrium state.

.
~~
. -
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state lx(0) ) sufficiently close to zero the corresponding f r ee Pnotion x(t 0.x(0),t)
remains close to zero for all t ~ t0 (Fig. 6.3). More precisely, we define the
zero-s tate I x >  = 0 to be stable in time sense of Ly apuno v if for  any 10 and any
e >0 there exists a b > 0 , dependent on e and t0, such that

Ix (0) I < b I x I < ~ (6.29)

Condition (6.29) implies that the free motion trajectory x(t 0, x(0), t) remains in
the cylinder of radius e for all time.

Additionally, we require that the system response eventually go to zero.
Our above definition of stabi lity in the sense of Lyapunov does not cover this
requirement. Therefore , we define the stability of the zero-state lx > 0 to be
asymptotically stable if (a) it is stable in the sense of Lyapunov , and ( b )f o r  any
t 0 Ix (0) > is sufficiently close to 0 such that the f r ee motion trajecto ry
x(t 0, x (0). t ) - ~0as t~~ °’~’.

We have seen previously that for the unforced system the solution to the
dynam ic state equation is

lx> = $(t) lx(0)>

4’(t) = e~~ (6.30)

Thus it is possible to represent the state at a time subsequent to to by a linear
transformation (involving the fundamental matrix 4)) of the initial state. There-
fore , for such systems it should be possible to determine the conditions for
stability which depend only on 4), According ly, in support of the definitions of
zero-sta te stabili ty the following theorems 1 app ly:

~~ 

plan ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 6.3 Zero-state stab ility. 2

1. The above theorems are pre sented without proof . For a demonstration of their respective
p roofs see , for exa mple , Zadeh and Desoer. Linear Systems Theory. pp. 379-39 1. pp.
498-503 . McGra w-H ill. New Yo rk. 1963.

2. Notationa ily x = x and the two flotations will be used interchangeabl y where brevity is
req uired.

LI ~~~~~~~~~~ -- 
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Theorem 6. o. The system is stable in the sense of Lyapunov implies (an d is
implied by) there exists a finite constant K which may depend on t~ such tha t

l 4) (t ,to)I ~ K (for all I ~~ t0) (6.3 1)

Theorem 6. 7. The system is asymptotically stable if

(a) l4)(t.t0)l ~ K (for all t ~~ to)

and (b) lim l$(t ,to)l  = 0 (for all t~) (6.32)

Theorem 6.8. The system is stable in the sense of Lyapunov implies (and is
implied by)

(a) All the eigen values of the constant matrix A have non-real parts , and

I - (b) those eigen values of A that lie on the imaginary axis are simple zeros of
the minimum polynomial of A.

Theorem 6.9. The system is asymptotically stable if and only if all the eigen-
values of A have negative real parts.

By theorems 6.7 and 6.9 above we assert that for fixed systems described
by (6.30) asymptotic stability implies that

lx(t o. x(0), t) I —
~ 0

in an exponential manner. We therefore specify that

I x(to,x(O) , t) I  ~ Ce~ ’~ (6.33)

where C is a constant and X is a positive number.
We can be more specific regarding the above definitions and theorems

through a simp le example. le t  the matrix operator A for the unforced system
governed by (6.30) have distinct eigenva lues X 1. X~ X,~, where each eigen-
value has the complex form

A 1 — u1 + /w 1

X 2 a 2 + 1w2

Xn = °n +

11 .~ ,: ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—------ 
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The real pa r ts of eac h ei genvalue can he ordered as O~ > (J~ > . .  ~~ o~ . I - r un t
equation (5.46) the state tran ~it iomI matr ix  $ can he wr i t t en  as

°

4) = 2 e ~”2... A,j ~
i = i  ,= i ( r —  I).

where the A~E are m atrix coefficients of lhe polynomial exp an s ium i and PPI ,, I’~ t I l e
root mult ip licity or degeneracy of the eigenva lues. I - or  the unforced s~~SI~~III 5~e
consider three situations: (1)  a <0. ( 2 )  a >0 . and ( 4 )  o~ 0. In each case s~e
refe r to equation (5.46).

Case( l) :  ~ < 0.
We see that for t ~ t~ the absolute value ut 4) remaIns finite. lii. tidi -

tion of Theorem 6.6 is satisfied. Further .

lim $( t0, t )  = 0

thereby also satisf ying the conditions of Theorem 6.7. It TIece ~sa r I~ fo l lows  t h at
Theorem 6.8 and 6.9 are also satisfied. Clearly then lu r  the case where the
eigenvalues have negative real parts  t h e st a te vecto r x~ 0 as t -- ~~~. The . v s t c T I l
representation is asy mptotically stable.

Case (2): a~ > 0 .
The time l imi t ing value of the transition mat r ix  $ in t i le,  case is

lim $( t0. t)  =

Therefore the state vector x> —~ 00 as t —. 00 • Hence. for the case wh e re the
system eigenvalues have positive real parts the system representation is unstable .

Case (3) : o~ = 0.

When the system eigenvalues are purely imaginary two s i tu a t i t - ns  arise:
(a) The system has simple roots , in which case the A~1 a re constant matrices

and 4) remains finite. Thus in accordance with Theorem 6.6 the system
representation is stable .

(b) The system has multiple roots , in which case the Art arc pol yno mials in
with matrix coefficients. Clearly

lint $(t~. t) = 00

Hence , the system representation is unstable .

I ’
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6.6 STABILITY-FORCED SYSTEM

Recalling the state dynamical equation and its solution we have for the forced
system

= A Ix > + B lu>

Ix> = $(t)[Ix(0)) + f$(~)Blu(~))d~
]

For discussion purposes we specify that the system is initially at rest. Let the
initial state at time zero be the zero-state , i.e., Ix(0) > = 0, after which time the
system is perturbed by an impulse. We examine the system response as it relates
to the concept of stability . For this situation the solution to the dynamical
equation becomes

lx> = f  $(t — ~)B lu( ~)>d~

f Glu( ~)>d~ (6.34)

where

G = $(t —~~ )B (6.35)

The elements of the matfix G are of the form

g11 = j J1
S~ik bk/ (6.36)

Since the vector lu> is a column matri x the relationship between the elements of
the integrand and the state vector is established as

x, �Ig ~u,

= �I~~~ Pj k bkj U/ (i 1. 2 n) (6.37)

J ~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Expressing the elemental input as an impulse

u, =

u, O f o r i �’ ;

the components of the state vector become

x, = g 1 (i 1, 2 n)

Thus G can be interpreted as the matrix of impulse responses of the state. For
such a system we define stability as follows : A forced system is stable relative to
a set of bounded inputs if and only if the state is bounded for all inputs l u > ( t) in
the set for  all t ~ t0. Accordingly we require that

lx (t ) l  ~ K < 00 (6 .38)

where K is a finite constant. In support of the above definition the stability
criterion for a forced system is established by the following theorem:1

Theorem 6.10. A f orced system is stable with respect to a set of bounded inputs
if and only if

f l gjj ld ~ ~ K- 1 < 00 (6.39)

for every t0 and all t> to.

We illustrate through a simple examp le the concept of stability as it applies
to a forced system. Consider the representatio n of the system in Fig. 6.2. The
system matrices are

1
’ r l 4~ Ii

A 1  I B 1
L0 5] L I

C = [I  — l J  D = [ l J

1. op. cit.

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~ i~ fl~~~
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The state transition matrix is

(At) 2
4) = eA1 = I + At + +

11 ol [1  41 I i  24] t 2
= 1 1 + 1  l t + l

[0 1]  [0 5] L 0 25]2!

We desire to examine in closed form the time dependency of the fundamenta l
matrix. This can readily be accomplished for simple systems by converting to the
frequency domain then back to the time domain. Thus

= [sI — A ] 1

[ s — l  ~~ 
—1

0 s - S

4

= 
s — i  ( s — l X s — 5 )

0 (s - 5)

Converting back to the time domain the fundamental matrix becomes

r e t eS t _ et
$(t) = I

L 0  eSt

Hence the product G = $B is

[e511
- , G 1

Le st

It is readily apparent that for the system of Fig. 6.1 the positive nature of the
elements of $ and B will cause all the non-zero terms to grow beyond bounds as
t becomes infinite. Therefore , the system representation for the example chosen ,
under both forced and unforced conditions , is unstable. This conclusion should
be no surp rise . Earlier it was shown that the representation for the system of
Fig. 6.1 was not completely controllable and not completely observable . How~
ever, with slight modifications we were able to render the representation as
completely controllable and completely observable. We now logically inquire as
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to whether or not sint ilar m odification s can be made in the case of system
stability—under forced and unforced conditions.

In the case of the unforced system the conditions for stability are manifest
in equations (6.31) through (6.33). Equations (6.38) and (6.39) represent the
conditions for stability of the forced systent . All of these conditions can be
satisfied in a variety of ways; the objective being to maintain a finite state vector
for bounded inputs for all t ~~‘ t0. An unstable representation of an unforced
system does not necessarily mean an unst able representation of that same system
when an input is applied. Time terms giving rise to the instability may not be
excited by the input. Nor does it necessarily follow that when the conditions for
stability are met then the system is completely observable and/or comp letely
controllable. Similarly, a stable representation of an unforced system does not
necessarily imply a stable representation of the forced system. We demonstrate
these important facts through a simple examp le. Re ferring to the system of Fig .
6.1 , we render the system stable by changing the representation to that shown in
Fig. 6.4. Essentiall y, the changes are in the magnitudes of signal amplification.
The modified system matrices become 1

11 11 I i
A 1  I B 1

10 - 1]  [-2

C = [1 1]  D = [1 )

The corresponding state transition matrix $ and impulse response matrix G are ,
respectively ,

et J _ (et _ e t)  
e

0 e 1 —2e ’

H.

Figure 6.4 System wherein the input does not excite the unstable mode.

1. After Schwarz and Friedlan d , Linear Systems . p. 381 , McGraw-Hill . New York . 1965.

~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ::~ -~~~ 4
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Due to the positive nature of the elements 
~ i and ~ l2 we have

lint $l = 00

Thus , the representation for the systeni of Fig. 6.4 is unstable when no input is
app lied. On the other hand the impulse response contains the diminishing terms
e t in both element sg 1 andg 2 .  Therefore the integrals

j lgi ld~ and 
f

Ig2 ld~

-
‘ both remain finite for all finite I ~~‘ tO . Consequently, the representation of the

system of Fig. 6.4 is stable when an input is applied. This apparent paradox is
resolved when one examines the controllability and observability matrices for
the sys tem, under both forced and unforced conditions:

Unforced system Forced system

u 0

B 0  Qc = 
- l

2 2

II i’l 11 I
OO = [~ o] 

Qo L l  0

Conclusions:

1. unstable 1. stable
2. not comp letely controllable 2. not comp letely controllable
3. completely observable 3. contpletel y observable

Thus, to resolve the above paradox it is concluded that the system input does
not excite the unstable mode. Both modes , however , are observable. The un-
stable mode is observed when no input is applied. The stable m ode is observed
when the input is app lied.

6.7 COMMENT

The central idea of the past discussion has been system representation in state-
space. The algebra of rational functions (polynomials), linear vector spaces . a nd

I ’
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the methods of Fourier and Laplace transforms were the principal anal ytical
tools. It was assumed that knowled ge of the system matrix operators and vari-
ables was complete. Howeve r , it must be recognized that for large systems this
assumption is short-lived. For large systems complete identification of all the
variables and their operator elements is not practical , and therein lies the prob-
lem of applying the linear theory to practical problems dealing with systems of
significant size . Consequently, a deterministic analysis for such systems gives
way to the more realizable probabilistic or statistical analysis. According ly, the
reader is referred to the methods of Markov chains , diakoptics , sparse matrices ,
fuzzy sets , statistical mechanics , etc., which bear on this problem.

.7
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7
Statistical Systems-S ignals
in Noise

7.1 INTRODUCTION

It is important to recognize the practical limitations of the theory developed this
far. Certainly, a deterministic analysis is possible for simple differential systems,
where all the descriptors satisfying the input-output-state relations are known.
However , for large complex systems all the state variables , the elements of the
fundamental matrix , etc., are not known nor can they even be defined in some
cases. The theory addresses a small part of the real (nonlinear) world. Conse-
quentl y, a deterministic analysis of many real systems is either not a simple task
or not feasible using the linear theory developed thus far.

As a method for augmenting the theory we turn to statistical or proba-
bilistic analysis. The input-output relation s are treated as random processes. We
will look at the statistical properties of each process , where the relations be-
tween these properties will form the basis of the analysis. The most important of
these are the mean value and correlation function . Our attention will specifically
focus on the filtering problem and stochastic processes, i. e., on signals y,(t )  that

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ r~.~’— 
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are described by their averages rather than signals u(t) that  are described by their
point properties. Appendix F contains a short summary of some of the proba~
bilistic expressions which will be used in the sequel.

7.2 AVERAGES (MEAN VALUE ) AND CORRELATION FUNC TIO N

As a prelude to the discussion to follow we consider two different ways to
represent an average. They are the time average and ensemble average . Both lead
to the same results. The time average (u( t ) > of the signal u ( t)  is defined as

(u (t) > = iim~~~~f
u(t)d t (7 .1)

where T is the time interval ~—t ,t).  This limit is a number associated with the
functional u(t) .  On the other hand the average of a random signal is interpreted
differently . Assume that the set {u ( t )}  is a stochastic process as defined in
Appendix F. For a given time t , the sample function u(t) is a random process
resulting in the random variable ~~. The expected value of the random variable
will be denoted as E { u ( r ) } ;  it is the ensemble average of the random process
{u( t )} .  We have

E{u( t) ~ = E{t (~ , t)~ (7 .2)

= u(t) (7.3)

= J af(a:t)dt (7.4)

- - where f ( a ; t )  is the probability density function associated with the value a of
the random variable , and f (a ; t )da  is the probability that a will be found in
a ± da. In conjunction with the above it follows that

J
f(a; t) da = I (7 .5)

In general (u( 1) )  and E { u ( t) }  are unrelated. ( u ( t ) >  is a constant . whe reas
E{u(t)} depends on t. However, if the process is sta tionan ’ (see A ppendi x F)

~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and satistles certain ergod ic conditi ons , then the tint e average (u( t ) >  performed
on each member of ’ the set is almost certainly a constant equal to E { u ( t) } ,  i.e. ,

(u ( t ) >  = L’ {u (t) } (7.6)

The correlation function R(~) t’or the process u(t) is defined by (F .8) as

R(~) = u(t —~~)u( t )  (7.7)

It is assumed that u( t)  is a station ary stochastic process where u ( t)  = 0. Expres-
sion (7.7) characterizes the statistical rel ationship between the values of u( r)  at
times t and t — 

~~, where ~ can be positive or negative. It is tacitly implied that as
~ increases the statistical coup ling between u( t)  and u(t -~~) becomes weaker.

Since u(t ) is stationa ry the mean values 7. u 2 ( t) ,  u(t — ~) u( t) ,  etc ., are
independent of t and depend only on ~~. Therefore ,

u(t —~~)u ( t )  = u(-~ )u( O) = u (O)u( ~) (7.8)

or

R(~) = R(— ~) (7.9)

For two processes , say u( t)  andy(t ) ,  the cross correlation function R~ 1,( ~)
is defined as

R,~4, (~) = u(t)y( t — ~
) (7.10)

Expression (7. 10) is unlike (7.7) in the sense that it is not an even function:

= R 1,11(~~~ ) (7 .11)

where

= ~~t)u(t  - ~
) = j ~t - ~)u( t )  (7.l 2)

In a manner similar to defining the average or mean value two different
ways we examine the time average alternative to (7.7). The process uO) is said to
be ergodic if all its statistics can be determined from a sing le samp le function of
u( t) .  Consequently, for ergodic processes the (time average ) correlation funct ion
R~~) is defined as , (see (F. I  7)),

R(~) = lim -
~~~~

- 

f
u(t — ~) u (t )d ~ (7 .1 3)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :±:~~~~~~~ L~~~~~~ :~~~ 
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R(~) = E~u(t -~ ) u( t) } (7.14)

= u(t -~ )u(t) (7 . 15)

7.3 FILTERING PROBLEM

The problem of filtering can be stated as follows : Let the time dependent input ,
applied at the system (filter) input terminal , be represented as the random
process u(t)  (see Figure 7.1). It is the sum of a useful signal s(t) and noise ~(t),
both of which are random processes:

u( t )  = s( t )  + ~(t) (7.16)

The system II operates on the input resulti ng in the output y(t) .  We have

y (t )  = H[u(t)I

= H [ s ( t) + .t~( t) I  (7.17)

The problem is to choose H such that it reproduces some meaning ful function ,
say ln(t). with least possible error. The function rn ( t )  is the transformed version
of the signal s(t):

m(t)  = H [ ~ ( t) ]  (7. 18)

In simple filtering H is the unit operator I , in which case (7.18) reduces to

n( t)  = .i (t) (7.19)

The instantaneous error of reproduction €0) is the difference

= y( t )  - rn(t)  (7 .20 )

= H[s(t)+ n(t)I — , n(t) (7 . 21)

II
~tt )  .v ( t )  = l l Iu (f l l

Figure 7.1
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Clearly, € (t ) is also a random process. The intensity of the f luctuat ions in the
process is characterized by their mean square value

E {e 2 ( t )}  = ~ 2(t)  (7.22)

In the absence of noise , where nO) = 0 . our interest will be in predicting
the value of s O) after a time interval ~:

rn( t )  = H [ s( t  + ~)1 (7.23)

The prediction is made by considering past behavior of s O) and exploiting the
statistical properties of the randon t process.

The discussion to follow will focus exclusively on linear f ilters . For such
filters the input-output relations can be written as

y( t)  = H L u ( t) J

J h(~)u(t — ~)d~ (7.24)

= f h(t - ~) u(~)d~ (7.25)

where h(t ) is the weighting function or impulse response of H. Filters charac-
terized by either (7.24) or (7.25) are time invariant or stationary filters. The
analysis will be noise suppression by linear filtering. Specifically, the filter will
be the type where u( t)  is stored for a time ~ then processed. It appears at the
output as ~(t) .  (Such systems resemble computers which store input data ,
process it , then deliver the processed data to an output terminal.) To fo rmy(t )
the values u(s) for all ~ are used. We seek the best system , characterized by H .
where is a minimum.

As a matter of convenience we will use u to mean u and similarly for all
other quant i t ies  of the process. Where clarification is required the context will so
state.

7.4 OPTIMUM L I N E A R  FILTER

• The accuracy with which the useful signal is reproduced is determined by the
inea,i square error € 2 . where c is defined by (7.20). The filter I! which minimizes

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- 
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the mean square error , where in the output reproduces t Im e meaning f u l  , n (t ) .  is
called an optimum filter. To determine II we first establish from (7.24) the
input-output  relationship for time optimum filter:

.v ( t )  = J h( ~) u( t -~~)d ~

The corresponding error function is. from (7.20).

€0) = f /m (~)u( t - ~)d~ 
- tn( t ) (7.26 )

Squaring (7.26) gives

e2( t )  [ f h ( ~) u(t -~ )d~] 
- 2r n ( t )J  h( ~) u ( t -  ~)d ~ + m2(i)

JJ h(~)h (~’)u(t  - ~) u( t -

- 2J h(~)rn (t)u (t - ~)d ~ + m2(r)  (7 .27)

where the square of the first term on the ri ght-hand side was transformed in to  a
double integral . Forming the mean of (7.27) we have

€ 2 0) = h(~) Iz (~’) u (t - ~)u(t -

- 2J h(~) m(t)u ( t  - ~)d~ + ,n2(t) ( 7 .28)

From definitions (7.7) and (7. 10) we introduce the autocorr elation function
R,1(~) and the cross-correlat ion function R,0~ (~). where

R 14 (~ ) = u (t )u (t  — 
~) (7 .29)

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... ~~~~~~ . :-:=~~~ . .-
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R14( ~ 
— 

~
‘ ) = u(t — ~) u( t  — 

~
‘) (7.30)

~~~ 
(
~

) ,n(t)u (t — 

~) (7.31)

We i m ot e t h a t  the autocorre lation funct ion

R,~(~) = m (t )m (t  
~) (7.32)

for ~ = 0 reduces to

R ,~(0) = Pn 2 ( t)  (7.3 3)

Thus , the mean square error for the optimun t f i l ter  can he wri t ten as

= h(~)h(~’)R 0(~~ ~‘)d~d~’ - 2f h( ~)R ,~0(~ ) d~ + R,,,(o) ( 7.34)

E quation (7.34) clearly shows the dependency of the mean square error on the
impulse response funct i ons and the correlation functions. It can be shown that
f 2 has its minimun t  value if and only if the  impulse response / i ( r )  is a solut ion to
the equation

f h(~ ’) R,,(~ - ~‘)d~’ = R,~0( ~) (7.35)

Thus , it now remains to solve (7.35) for h(s).
Time solution to (7.35) will be more convenient with the following defini-

tions. Given the correla tion function R(~) we introduce its Fourier transform
S(w). where

S(w) =

r
= J e

i~
tR(~)d~ (7.36)

Inverting (7.36) gives

R(~) = _
~-_ J e’~ tS(w)dw (7 . 37)

~ 

j ~~~~ 
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The function S(~~) is time powe r spectral density , the nmeaning of which will

become clearer later. Similarly , we introduce the transform of the impulse re-

sponse I i ( t) :

=

J e~~~~h(~)d~ (7.38)

Its inverse is

/m (~) = e~~J t ll(L,) d W (7.39)

The function H(~.m) is called the system transfer fu nction . We can now begin to
solve (7.35) for h(o ) .

Multip lying both sides of (7.32) by e~~’~
t and integrati ng with respect to ~

gives

J e
1wt d~J h ( ~ )Ru(~ - ~‘)d~’ = 

Le
-1

~~
R,?Iu

~~~
d

~ 
(7.40)

Letting the variable ~ 
— 

~~
‘ 1 the left-hand side of (7.40) becomes

f e
t d~ f Ji (~’ ) Ru(~ 

- 
~‘)d~’ = f e ~~~t’h(~’)d ~j e

1 WtRu(t )dt

= H( w)S 14( w)

whereas the rig ht-hand side is equal to Smu(w) . Equation (7.40 ) therefore
becomes

= S,~~~(w)

Thus , the transfer function of the optin tun t filter is simply

• Smu ( W)
H ( w)  = 

S~4(w) 
(7 .4 l )

i.e.. it is the rat i o of the spectral densities S,011(w) and S0(w).

U~~~
.
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Substituting equation (7.35) into (7.34) the mean square error for the
optimum filter becontes

= R~ (0) - 
f L ’~u~ 

- ~ )d~d~ (7.42)

In view of transforms (7.36) through (7.39) we can write

R,~(0) =

- ~‘) d~d~’ = j ~

~~~

from which it follows that (7.42) can be writ ten as

C 2 = ISm (W) u(W)h1( 1(0,)) Id~-)

Using relationship (7 .41 ) the mean square error becomes

~ I ~~~~ Sm (W) S z,(W) — Spnu (w)smu( c~))
C = -

~~~~~ J S o  d~ (7.43)

where

S(w) = S(-~~~)

Li~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We now apply the formulation to the problem of simple filtering where

m(t) = 5(t)

11= I

We assume , for simplicity , there is no cross-correlation between the useful signal
and noise , i.e

s (t) n (t —~~)  = 0

The correlation functions R5~ and R~ can be written as

- 
I R50(~) = s(t)u(t - ~

) = s(t)s(t - ~
) + s( t)n(t - ~

) = R5(~)

= [ s ( t ) + n( t)j  [ s ( t -~ ) + n ( t -~ ) J = R5(~) + R~(~)

Consequently,

S50(w) = S5( w)

S0(w) = S5 (w) + S~(w)

and , from (7.41), the transfer function 11(w) is

S5(w)
H(w) = S5(w) + S~(w) (7.44)

The corresponding mean square error becomes , by equation (7.43),

— I Ss(W)S ~(w)
C = 2TJ S5(w) + S~(w) dw (7.45)

- - - In the case where the spectral densities S~ and S~ do not overlap (Fig.7.2a) we have , from equation (7.44),

11(w) 1 , S5( w) � 0

11(w) = 0, S5( w) = 0

From formula (7.45)

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ r ’ ~~~~ -
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S,,(~ )

S~(w)

a. 

A } ~~~ 

b.

‘~‘ I ‘~2
Figure 7.2 Filtering of random processes.

Hence , simple fI ltering, where the useful signal and the noise do not occupy the
same frequency band , takes place without error. However , if S~ and S,,, overlap
(Fig. 7.2b) then error accompanies the filtering. The error is, in part , due to the
noise in the frequency range w1 <w < w~ passing through the filter, and, in
part, due to the distortion of the signal resulting from attenuation in the fre-
quency range w1 <w  < w~ . As S,, gets larger and S~ gets smaller in the range
wt <~~ < ~~ the less this range will be allowed to pass through the optimum
filter.

We next examine the interesting case where

S~(w) ~~‘ S5(w)

The spectral density of the noise is much larger than that of the useful signal. In
this case the transfer function is approxin tated , from equation (7.44), as

Ss (w)
S~(w)

The corresponding mean square error is, from (7.45),

= 

~~ 
f S~(w)dw = R 5(0)

L
Thus , when the intensity of the input noise is much greater than the useful signal
and occupies the sante frequency range then the mean square error at the output
of the optimu m filter is equal to the mean square of the usefu l signal. This is to
say that when th e input noise is intense the intensity of .s~ t)  at the output is
weak. In fact, we have , approximately,

y ( t) 0

~iIiI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ _____ ~~~~~~~~~~~~ ,.— .
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e( t)  = s(r )

since the magnitude of H is much less than unity .

7.5 SPECTRAL DENSITY OF SIGNAL AND NOISE

We assumed in the simple example of Section 7.4 that R50(~) 0. However , in

practice R5,,(~) * 0 and , therefore, S5,1(w) is finite. Accordingly, one can ask

what is the physical significance of S5~(w)? Front (7.36) the spectral density

S~,,(w) corresponding to the cross-correlation function R5~(~) is

S50(w) = S05 (—w) (7.46)

S5~(-w) = S5~(w)  (7.47)

For the process u( t)  we can write

R~(~) = [ s ( t )  + n O) J E s( r  — 
~~

)  + n(t —

= R5(~) + R~(~) + R50(~) + R05(~)

Therefore

S~(~) = S5( w)  + S0(w) + S5~(w) + S~5(w)

= S5(w) + S~(w) + 2Re (S 5~( w)I

Thus , the spectral density of the input process consists of that which is signal .
that which is noise , and an added real part 2Re[ S 50 (w)I called the interference
intensity caused by the statistical coup ling between 5(1) and n(t) .  The imaginary
part of S50 (w), which identi fies the phase of the statistical relation ship between

s ( t)  and n (t) .  has no explicit physical meaning.

7.6 POWER SPECTRAL DENSITY AND CORRELATION FUNCTiON

Consider the stationary stochastic process of Appendix F. Let the process be
ergodic where the sample function u(t)  contains all the characteristics of the
process. For real u ( t )  with Fourier transf orm U(w) the energy E of u( t )  is

= 
J :

u 2 t d t  = ~ [ ~~(~~ 2d~J (7.48)

~ 
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The quantity U(w) 12 is the energy density spectrum whereas u2( t)  is the instan-
taneous power associated with u(1). The average power P of ,A(t) is

(P) = P = Rm .~~~, f u 2(r) dt (7.49)

It is possible from (7.48) and (7.49) that the energy of u(t) can be infinite and
the average power finite. If the energy of u(t) is not finite it may not have a
Fourier transform. Therefore it is convenient to define the truncated signal
uT(t):

I u(t)  I t I  ~Z T

1. 0 I t I > T

The corresponding Fourier transform UT(w) is

= f u~ (t) e 1~~tdt = 
f

u(r) e_1
~~tdt (750)

Thus , as T —l. the truncated sample function UTO) approaches u(t). The aver-
age power Pr of u(t) over the interval (—T , 7) may now be written as

(Pr) = u2(t)dt =

= 
~~~~~~~~~~~~~~~~~~~~~ 

( 7. 5 1)

The quantity IU(w)12/2T is the power spectral density of u(t)  in the interval
(- T. T).

In dealing with a random process that is not ergodic, we may associate
with each sample function u( t)  a truncated sample function u~ (t), its Fourier
transform U~(w)  and its spectral density . The powe r spectral density W(w) of
the random process is defined as

W(w) = E {I Ur ( oj )~2/ 2 T }

L
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=

= tim T4 U(w)U*(w) (7.52)

i.e., it is the limit of the ensemble average of the power spectral densities of all
of its truncated sample functions. Accordingly U~(w) is a random variable.

Equation (7.52) is not in convenient form to calculate power spectral
densities. A more convenient form relates power spectral density to the correla-
tion function. For stationary processes W(w ) is the Fourier transfo rm of the
correlation function . We see this by substituting the definition of Ur (w) in

(7.52), wh ich gives

W(w) = tim ~~~Ur (w)U ~(w)

= 
~~~~~~~ 

-~~E {f u(t) e~~~tdtf  u(t)  e1~’~tdt}

= t~~~ E 
{j

T
dt lj

T
dt2 U(t l) u (t2)e ~i~ (t I _ t 2) }  (7 53)

The ensemble averag ing of u(t i ) and u(t2) is

u(t 1)u( t 2)  = Ru (tl, t2)

u(t — r 1)u(t 
— t2) = R~(t i — 12) (7.54)

Substituting (7.54) in (7.53) we have

W(w) = tim ..~f dt if  dt2 R~(r t 12 / t r t 2) (7. 55)

The double integral can be written as a single integral with the simple change of
variables ,

= t 1 - t 2 = t 1 +

d~~= d t 1 d~’ dt2

p ~~~~~~- r  ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -
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Accordin gly, for any function gOt— ~2) one can write

T •T 2T 2T—i~
fdt t 1 (/12 g( t t 12) =

~~2T
= j ( 2 T-  ~)g(~)d ~

-2T

Using this expression in (7.55)  we get

W(w) = u r n  

~~~~:r
(2T ~()R 1 ) e ~~

td~

= 

~~ ~L:: 
(I - R11(~) c~~~ d~

= f R u(~)e 1
~

) td~ (7.56)

Thus , for stationary random processes the power spectral density is the Fourier
transform of the corre lation function.

In comparing (7.56) with (7.36) it is seen that  from the definition of S(w)
we have

S(w) = W(w) (7.57)

The inverse of (7.56) immediately gives

R,~~) =

= -~-_
J

W(w) e ’~”t d~ (7.58)

Relationships (7.56) and (7.58). between the powe r spectral density and the
correlation function , are known as the Wiener-A ’Izintchine equat ions.
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7.7 CORRELATION TIME-PASS BAND PRODUCT

Using (7.36) and (7.37) we consider a few samp le functions of R(~) and corre-
sponding S(w):

R(~) S(w)

(a) R (0) e~~~ 
2a R(0)

a + w

-
‘ (b) 

R(0) ir k(0) 
e~~1tl — a 2

~
2 a

(c) 
R(0) sin w0~ { 

~~~~~ -w0 < w < WQ

0 otherwise

where a is a real parameter. In each case the functions R(~) and S(w) assume
their maximum values when ~ = 0 and w = 0. We (loosely) define the correlation
time z~ as the time interval ~~~~~~ < ~ < ~~ within which the value of R(~) is o f
the same order of magnitude as R(0). Outside this time interval R(~) is much less
than R(0). For the examp les chosen ~~ is approxin tate ly equal to I/ a , i .e.,

I/a. Sinm ilarly, we define the spectral bandwidth ~ w as the frequency
interva l -~ w <w < ~ w within which S(w)  compares to S(0). Outside this
interval S (w)  is niuch less than S(0). For the examples chosen Aw a. Hence
the correlation time-bandwidth product

z~~L~w ~
- 1 (7.59)

By introducing a more exact definition of z~ and ~w we can derive a
corresponding ly more precise expression for ~~~~~ Let the spectral bandwidth

~ w be defined as

J
S(w)d w = 2j S(w) dw = 2S(0)&~ (7.60)

Definition (7.60) specifies ~~ such that  the curve S(w)  can be approximated by
a rectangle of height S(0) and width 2~ w as shown in Fig. 7.3). The area of the

- -L ~~~~~~‘ i ~~
- -  

- ~~
-
~~~

-.-~~~~‘:
‘: ~~~~~~~~~~ _ ._____

Th
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S(~,)

-&., +&_,

Figure 7.3 Spectral bandwidth.

rectang le is equal to the area under the curve S(w). Similarly, the correlation
time ~~ is defined as

= 2j R(~)d~ = 2R(0 )~~~ (7 .61)

Using

S(0) = J R ( ~)d~ R(0) =

the exact relation for the correlation time-bandwidth product is

= -
~~

- (7.62)

Equations (7.59) and (7.62) apply to any pair of functions which are the
Fourier transform of each other. Of particular interest is their application to the
impulse response h(s) and transfer function H(w). The quantity ~ w defines the
pass-band of the system. ~~ defines the correlation t ime or memory of the
systc~m. The system memory is taken to be the time interval during which the
input appreciably influences the output. It symbolizes the time during which the

system responds to a unit impulse .

7.8 TRANSFER FUNCTIONS AND LINE AR OPERATORS

The relationship between s( t)  and m(t) was specified by (7.18) as

m( t )  H [ s ( t ) J



-
~

-
~

---- -
~

- - -
~
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where H is a linear operator. The Fourier transform of the impulse response Ic .f.
eq. (7.38) 1 established the transfe r function 11(w) for the optimum filter as Ic.f.
eq. (7.41)1

Smu( w)
H ( w )  =

Su(w)

Equation (7.4 1) is the direct result of the input-output relation

.v ( t )  = 5
We next investigate the relationshi p of H and 11(w). From (7.18) the

integral form of the operator equation is

m(t)  = 5 h(t ’)s( t - t ’) dt ’ (7.63)

Previously we had

Smu(w) = f e tRmu(~)d ~

= f e /~ t m(t)u (t - ~)d ~ (7.64)

Substituting r n(t) from (7.63) into (7.64) gives

Smu(w) = 5 e_1~ td~J 
h(t’)s(t - t ’)u(t - ~)dt ’

= J e
_ t d~f

h(t ’)R su(~ — t ’) dr ’ (7.65)

I

_ _ _ _ _ _  j
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By chang ing t he variable ut integration , such t h at ~ = I + 1. equation ( 7 .65 ) c a i i
be wr i t te n as

S,, II ~(w )  = I e_Jwt h( t ’) d lj  e ‘~~‘R sI, ( t ) dt

= 11(W)Ssu( w)  (7.66)

Thus the transfe r function as derived from the operator relation (7.63) is the
ratio of t h e spectra l densit ies S,,11~(w) and S~0(w). where we have specified the
general form of 11(w) as

11(w) = 5 e ”~
th(t)dt (7.67)

Obviously, not all linear operators can be written in the form of (7.63). It t
t hese cases t he tra nsf er f u nction 11(w) is defined to be

Sma ( w)
S~~(w )

A few simple examples illustrating this point are as follows: For simp le fi ltering
His the unit operator. i.e. .

rn( t)  = H [s(t)j = s(t)

and Smu(w) = S~0(w) .  Thus the transfer function

H(w) =

For time-shift operators where

m(t) = s( ( +~~)

it is readily shown that

H(w) =

Th e d if fere n tiation operato r

in(t) = —
~~~ ~s ( t ) }

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — ,~
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gives

/1 (w) =

whe reas t he integral operator

m ( t )  = J d t  ~s(t) }

/
= ~s ( r )}

gives

jw

Each of the above identities can be proven by forming S,00( w)  and S51~( w)  and
applying forniu la (7.66).

Generalizing the above equations it can be said that if the t ransfe r function
11(w) is a polynomial

11(w) = ~~ C~( j w) ~ (7.68)

where the coefficients C~ are constants ,  then the corresponding operator can be
writ ten as

H = ~~~~ ( d) t  (7.69)

Formula (7.69) applies onl y when (7.66) can be written as the ratio of two
polynomials

Pb(w)
11(w) = (7 .70)

P~( w)

wh ere Pa(w) and Ph (w) are polynomials of degree a and h . respective ly . and
a>  b. If a ‘~~ 6 the numera tor  is divided by the denomin ator  givi n g

/1(w) = 110 ( w )  + 111(w) (7.71

I ,
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—— .-
~~~~
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where

b- - u
II ~( w)  = L (~ (/ w)t (7.72)

and time remainder

= 5 /l~~(~~)U(t ~)d~ (7.73)

7.9 MONOCHROMATIC SIGNALS

The classical form of an amplitude nmodulated signal generated by an harmonic
oscillator is

s( t )  = a cos w01 + b sin w0t

= e cos (w0 t + ~~) (7 .74)

where

a = e cos p b = e sin p

Let the modulation parameters a and b , or e and ~~, be random variables which
are independent of time and satisf y the conditions

1 b 0  a 2 = b2 a b O  (7.75)

Then waveform (7.74) can be considered as a random process. In order for this
process to qualify as a quasi-monochromatic signal the bandwidth ~.w of the
modulation must be very small compared to the carrier frequency wo. i.e. ,

~ w0 (7.76)

In accordance with conditions (7.75) the stationa ry random functions a( t )  and
b(t) h ave t he foll owi n g stati stica l properties

= = 0 (7 .77 )

a( t )a( f  — 

~
) = b(t) b(t  — 

~~) 
= c2 r( ~) (7.78)

Li~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~i
-

~~~~~ :-~~~~~~~~~~ ~~~~~~~~~~~~~~~
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a(t)b( t - ~) = b( t)a(t —~~) = 0 (7.79)

where c2 r( ~) is the aut ocorrelation function for processes a ( t )  and bO) . By
prop erty (7.79) there is no cross-correlation between the two processes. The
constant c2 is determined by

= a 2 = (7 .80)

i.e., it is the mean square value of a and h , so that

r(0 ) = 1 ( 7 . 8 1 )

Correlation functions satisfying conditions (7 .8 1)are said to be normalized .
Calculating the correlation function for s( t)  we have

R5(~) = [a(t )  cosw0t + b( t)  sinw0 tj  [a(t — 
~~) 

cosw0(t — 
~~

)  + b(t — 
~~) 

sin w0(t -

‘ c2r( ~)f c o s w 0 tcosw0(r — 
~~) 

+ sinw~j t s inw~(r -

= c2 r(~)cos w0~ (7.82)

On normalizing we have for ~ 0

R~ (0) = = s 2( t)  (7.83)

The spectra l density for the normalized correlation function r(~) is

s( w) = f e 1~~t r( ~ )d ~ (7.84)

Its corresponding inverse becomes

r(~) = ~—f e’~~s(w)dw (7.85)

Thus the spectral density S5(w) of the quasi-monochromatic signal s (t) can be
written as

S5 (w)  = f e
tRs(~)d~ = c2 f e t r( ~) cos wo~ d~

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
-:
~~~~~~~~~~~~~~~~~~~
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= 
e2 

+ J e
b 0 ) r( ~ )d ~

]

= ~ is(w — w0) + s(w + w0) J  (7.86)

We assume that  s(w) is bell-shaped with its maximum at w = 0. Therefore from
(7.86) and (7.76) S

~
(w) represents two non-overlapping be ll -sh ap ed curves

centered approximatel y at —w0 and -4-wo. Front (7.62) where

= -~~~

inequality (7.76) implies that

w0~~ ~ 1 (7.87)

Since ~~ defines the variation with time of time random functions a ( t )  and b(t)
condition (7.87) specifies that cos w0r and sin w01 undergo many oscillations in
time before a(t)  and b(r) change appreciably.

For the ensuing calculations we choose the fo rm of the normalized correla-
tion function as

r(~) = e ”~
tI (7.88)

where a determines the spectral bandwidth . The corresponding Fourier tra il s-
form gives

s(w) = ( 7 . 89)
a2 +

From (7.8 I )  and (7.85) we have
I.

s(w)dw =

which when combined with (7. 60) gives

~ w = —~-a (7. 90)

U. 
- 

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~—- -  — ------
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We it ow exa ittine time op ti l i l um filte r wit ich separates the quasi-

monoc lironta tic sigital front so-called “white noise .” i.e., noise of constant

spectral density. We have

S,1(w) = S,1 = const . (7. 9 1)

For simp le tul tering where there is no correlation between signal and noise , i.e .,

where

= 0

the transfer function is , by (7.44),

S5 (w)
11(w) = 

S5 ( w ) + S ,1( w)

and

1 e~~
) t dE

h (s)  = 21r J I + 1S,,(w)/S~(w)1 
(7.92)

Our solut i on to (7.92) will he confined to positi ve values of ~~. since h(~) is an

even funct ion.  Representing t ime denominato r of (7.92) as D(w) we look for the

roots of the equation D ( w )  = 0. For w wo we have approxi mate ly . from

(7.86).

c2a
S5(w) —~- s(w - wo)  = —

~~~~~
- (w - w0 ) + a

where the ter r tm s(w — wo)  ~- s (2 wt i)  is neglected. Thus, the denomina tor

(w - w0) 2 + a 2
D ( w)  I + S - —T —

c a

has the roots

w = wo ± / 0

wh ere

o v ~~T~ 2a/~~)

III ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~. ~~~~~~~~~~~
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Sim ilarl y ,  two other zeros of D ( w )  can be found for w —w e . At the poles
w = ±wtl +j 0 of the integrand in (7 .9 2 ) t h e  derivative dD / dw is

dD . 20S,~
~~~~

where we have asserted tha t  only time poles in the upper half-plane are important.
The con tour of ir tt egr ation is closed in time upper half- plane and the integral is
reduced to a sum of resid ues . The final expression for h(s) becomes

a2
h(~) = —~ e 0 

~ cos w0~ (7.93)

where 
—

~ s~( t )
= = S,~~w 

(7.94)

The dimensionless parai mm eter p represents the signal-to-noise power ratio . it
depicts the extent to wimich the signal is stronge r (or weaker) than the noi se.
From the above the parameter 0 can be written in terms of a as

0 ~~~~~~~ (7.95)

According to (7.83) ~.2 represents the average power of the quasi -monochorn iatic
signal . and by (7.90) S,1cm is the noise power in the band occup ied by the signal.

For small signal-to-noise ratio p ~ I .  Therefore equation (7.95) imp lies

0

Hence , froni (7.93). (7.94) asm d (7.88) the impulse response is

h( s) = ape ~~ tI cos wo~

F R5(~)
= (7.96)

and fron (7.44) the transfe r function reduces to

S~(w)11(w) = (7.97)
-,

which is in agreement with our discussion in Section 7.4.

_______

~ :~~:~~~
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Time pass-band established by lime roots of 0 (w)  include t h e  f r equency

im m te rva ls w1~ ± ~ w aimd —wt) ± ~ w where , from (7. 90) and (7.93 ) . tim e spectral
ba mm dwidti m ~ w is determined by the para meter 0:

= -~ 0

iT
= ~-a~J l +p (7.98)

We see front (7.98) that as t u e  noise power 5,, decreases the pass-band ~ w
increases. Timis leads to a shortening of the (memory ) time I /O required for t ime
sig !mal to be extracted froni the mmoise . wimic im agrees witim our earlier conclusion
that for simp le filtering in time absemmce of noise no tin m e is required to duplicate
the signal. However , the extraction of signals in the presence of noise must be
done in a time less tha lm time correlation tu lle of the sigimal. in wimicim case we
always have 0 > a.

The mean-square filtering error for time quas i- nmonochron matic signal is

= ~2 - If I H(w) 12S (w)dw

- 2 .  I f S~ (w)
- C 

~~~~~j  55( w)  + S,,(w) 
dw

‘
‘ = S~(w)

= C - 

~f I + [S,,/S~(w)I 
dw (7. 99)

Time integral of (7.99) is evaluated by calculating the residues associated with the
zeros of time denoimminator (w = ±w0 + j O)  and time residues associated with the
poles of time nunmerat or  (w = ±w0 + /a) . Equation (7.99) becomes

— S5(wo +j0) + ~~~~~~ 
+ j 0)

2S,, 0/c 2a

c2 a (.2 
7 0 0 ~~~. l )

Consider tile s i tuat io m m wimere the signal is “im ig h ly ” monochromatic , i.e..
the parameter  a approaches zero. There fore . by (7. 94) p t lmen increases am md b y

-~~~~~~ 44
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(7.100) e2 decreases. E t b ~ct ively , the fil ter pass-hand ~ w becomes narrower and
its correlatIo n t iImi e ~ t I / O becoumes larger timereby makin g more effective use
of the si gnal. For strict ly monochromatic signals a = 0 w = 0 and ~2 = 0. In
this case t h e  infinite working t ime of time f i l ter  pr oduces an inf in i te ly  simma l i (( I f
ze ro) erro r. Clearl y, for a finite working time the erro r is greater t i man zero.

7.10 SIGNALS OF KNOW N FORM IN NOISE

In our previous discussions we treated t ime sig imal and noise as random processes.
In the disciplines of radar and radio conmn mu ni cat i om ms the signal is usuall y of
kimowim form and is not regard ed as a random pro cess. Instead , it can he regarde d
as a known function with several unknowrm par am mme t ers , such as amm mp i it u de or
phase . 1m m such cases fi l tering I mmust , (a )  make time most rel iable observation of time
usefu l signal , and (b)  make time most precise measurem ent of time signal’ s un-
known p aran leters. Co imse quently, a perfor nmaimce n i etric of a filter extr act ing
sign als from n oise can be t ime si gnal-to-noise ratio at the output.

Assuti ming the signal s(t) has a well-defined form we lmave from (7. 16)

nO) = s( t)  + n (t)

where n O) is a random process. Tim e corr e spoimd ing ou tput  is

= I1 (u ( t )~

= // lsO)J + / / In( t) J

= uO) + t~( t)  (7 . I 0 i )

where 0 ( t)  and r1(t) are the results of passing the useful si gnal and noise , re spec-
tively . throug h the fi lter. For s ( t)  we can write its Fourier transform and inverse.
respective l y, as

S ( w)  5 C 1
~~~S ( t) d f

s ( t )  = -~---J e 1
~~’.S’( w ) (/ w

U ‘ 
—
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Thus , t h e  usetu l signal at the tI lt er output is

0 ( t )  = ..!~~ f e1”~
tI ! ( w) S(w) dw (7 .102)

Treatiimg the imoise as a random process we can write for n 2 (t) [c .l ’. equation
(7 .48)J , the average noise power at the input ,

n 2 ( t)  ‘.

~f S, 7(w) dw (7. 103)

The noise at the output of the filter beco mes

+f ~~u1(w )~
2Sfl(w)dw (7. 104)

Accordingly, we defin e time signal-to-noise power ratio p as

[0(t 0) ] 2
(7.105)

where a(t0) is the signal va)ue at a specified time t~. From (7.102) and (7.104)
the signal-to-noise power ratio can be written as

I s:e
1wt0 1 1 ws w d w

~

2

p = - ~-- 
= 

(7.106)

5 H(w) ~ S~(w) dw

We now look for a filter which gives tIme largest value of p. Our analytica l
procedure will be to use the re l atio m m

y (t0) = oOo) + ~(t 0)  (7.107)

to decide whetimer or mm o t a sig lmal is present. and immake

cJ(t o) I > ~~~~ (7 . lO 7 a)

-- - -

‘
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by as ni uci ,  as possible. Applying time Scilwarz inequality

5 e 1Wt 0lI ( w ) S( w ) dw ~ 
~ 5 l!(w)1 2 S, , (w)d wj  ~~~~ dw (7.108)

to (7.106) t Ime upper boulid of the signal-to-noise ratio can be established as

1 
‘ IS(w) 12

p 
~ S0 (w) 

dw (7.109)

If we let tIme transfer function /1(w) have time forimi

S*(w)
• /1 (w) = ke / ”tO 

S~(w)  (7 .1 10)

where k is an arbitra ry constant. p reaches its nm ax imu lmm in (7. 109). We have

(‘ S(w)12

2-ir J S,,(w) 
dw (7.11 1)

Thus, a linear filter with the transfer function (7.1 10) is time best filter among
linear filters. Further , if the noise n ( t)  is a nornma l random process (i.e., Gaus-
sian) the filter (7.1 10) is an absolute optimunm. Physically, (7.1 10) is interpreted
to mean ti m e larger time amp litude spectrum of the usefu l signal and time smm ma ll er
the power spectrum of the noise in time frequency interval (w.w+ dw) .  the more
time opt imun m filter will pass those frequencies. Also , front (7.111) it is apparent
timat time greater the disp lacement of frequency spectra of the usefu l sig mm a l and
noise the greater the signal-to-noise ratio at the filter output .

in using filter (7.110) to detect signals of kimown form it is only necessary
to know the value of (7.107), i.e.. the value of the output function at time t0.
According to (7. 102) aimd (7.110) we have

0(t)  = eIt~
)(t b 0) 

S(w)( 2 
dw (7 .112 )

from which it follows that

I o(t) I ~ a(t 0)I = I k l p  (7 .1 13)

I
-
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By setting k = I in (7. 110) we see that ,  according to ( 7 . 1 1 1 )  and (7.1 12).

oOo) = p ( 7 1 1 4 )

and according to (7.105)

= p (7 . l l 4a )

i.e.. time signal-to-noise ratio gives simmmultaneous ly the useful signal and the noise
power at the filter output.  In this case it can be shown t imat at the f i l ter  output
the useful sigimal is related to the cor relatio im function of the imoise according to
t ime formula

a(t) = R,1(t 0 — t)  (7.1 l~~)

7.11 THE MATCHED FILTER

In the case where the noise spectrum is uniformly distributed over the useful
frequency band we have the condition called “white noise. ” For this condition

S(w) = = const. (7.116)

From (7.110) the transfer function is

11(w) = e t~ t0S *(w) (7 .11 7 )

where arbitrarily we have chosen

k = S ~

Thus, for signals of known wave form wherein the noise is t reated as a c ons tan t .
the filter can be matched to the waveform (or its conjugate ). Therefore , it is
usual ly called the matc imed fil ter (or conjugate f i l ter) .

Since the signal s(t)  is real the conjugate of its Fourier tra nsform can he
written as

S*(w) = S (-w)  (7. 1  18)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 - -
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The si gnal at the output  of time f i l ter  is , according to (7 .102) . (7.117) armd
(7 .11 8).

0(t) =

= ~~ f e
1~~

t_ b o s (_ w)dwJ e ’wt s(t ’ dt ’ ( 7 .119 )

which , upon changing the order of integration , gives

0( t )  = ~~—j  s(t ’)dt ’j e ’~~° t S ( -w) d w

=

= f  s(t ’) s ( t ’ - f + t 0) d t ’ (7. 120)

Clearly (7.120) }mas the forn i

s ( t) s ( t  —

Earlier [ct .  eq. (F - I  7)] we defined time tiimme-average or integral form of the
autocorre lation function R~(~ ) as

R5( ~) = f  s(t) s( t -~~)d ~ ( 7 . 12 1)

Time integral form of R~()~ differs front de fim mit ion (7.10). Instead of taking time
ensemble average s (t)s( t  — 

~) for a large number  of identical experiments ,  we
observe a single sanmp le function which contai rms all the s tat is t ics  of the  process.

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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From ( 7 . 1 2 1)  we have for an ergodic process

R5(0) = f s~~t )~ t = F (7. 1 22)

which is in keepi mm g with (7.48).
Substi tut ing ( 7 . 12 1)  in to  (7. 120) tIme signal at the filter output is

0(1) R5 (t — t o)  (7. 1 23)

i.e., time mat cimed filter is a ~‘orre lator ~ its response to the useful signal is Its
cor relation function. At t = 

~ 
the output becomes

o(t~ ) = R~ (0) = L’ ( 7 . 1 2 4 )

Khintchine ’s theorem states that for any rando nm process u (t)

S,(w) ~ 0

Timerefore . the following inequality holds :

= 

~HJ Su( w ) L~~
t d~ 

~ ~-J S,~(w)dw

Thus , it follows that

R 5(0 ) ~ R5( ~ ) l  0(10)  ~ c(t) ~ (7. 1 25 )

0(to ) is f he maximum value of the usefu l signal at the filter output: t l m is max-
inmun m value is the total energy of the signal .

From (7. 111 )  and (7.1 16) the signal-to-noise ratio is

p 

~-J I S(w)l 2dw (7. 126)

And. from (7. 118) and (7.1 22) we have the identity

~~ f I S(w)I 2 dw = ( s 20) dt = F

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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Thus , time sig llal .to-no ise ra t io  takes oim time s lIli p le foru m

p (7.127 )

i.e.. it is deter mined by the energy content of tire signal and time noise spectral
density.  For si tuations where the background noise is “con sta n t ” t ime only way
to i mprove detecting a signal of known for m mm is to increase its total energy.

According to (7.39) (lie impulse response 6 (t) for the matched filter can
be w r i t te n as

= i_ f e~~ t/1 (w)d w

= ~~ f e
t t o) S(_w ) dw

= s O — t o)  (7 . 1 28)

Thus , time impulse respoimse of the best f i l ter  in white noise is time mirror irmlage of
the signal. delayed by t0 seconds. Timerefore , by (7.23 ) time ou tpu t  of the
matched filter is of the form

0(1) = f s (t ’ - t + t 0)u(t )dt ’

The matched I~l t r  forms the cross correlation between the useful signal s(t ) and
time input u(t).

To appraise t lm e operation of the nm atc imed filt er we assume the usefu l signal
h as a si nu soi da l wave for m an d contai n s energy i:. We specify the transfe r func-
tio n as “recta n gul ar ” havin g the following characteristics :

l1(w) = I for -w --~~w < w < -w +~~w

11(w) = 0 for wo - - ~ w < w < w0 + ~~ ( 7 .129 )

I
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Our objective is to commipare the signal-to- noise ratio of time “m n m s lnat cim ed ” recta rm-
gu lar filter with that of the matched filte r giving

E
a—

p Sn
= —

~~~~~~ = a
po L

Sn

where p0 is the signal-to-noise ratio of the matched fil ter .  The exercise below
will be to determine the value of a.

We specif y for the sinusoidal pulse under consideration the appropriate
form

T0 T0
s(t) = A cos w0t - -

~~
- < I

T~= 0  ~~~~~~~~ ~~~~~~~ (7. 130)

where wo is the carrier frequency, A is t he pulse amp litude and T0 is the pulse
duration (or period). One can write for S(w)

S(w) = f e~~~
t s (t) dt

CT0/ 2
A 1  e 1~

t cos w0 tdt
J-i-0/2

= A 
sin(w — w0)T 0/ 2 

+ 
sin(w + w0) T0/ 2  ( 7 1 3 1 )

w- w0  w + w o

For the conditions where w0 T>> I equation ( 7 . l 3 l )becomes

sin(w — w0)T 0/ 2
S(w) = A (7. 132)

w— w o

Fron (7.102) the filter output for the simp le fil teri ng speci fi ed by (1. 129) is

a ( t )  = e/
~

tS(w)dw + e/W(S(w)dw

‘

~. 
; “‘.-.

~~

- ‘_

~4 
_ .‘

~, . ~~~~~~~~~~ .
-

~~~ .. - -a-— , - — .-~~ .-.-“,‘ — .4.. ’ - -.~ “-

— 

~~~r f ~~~ 7~~~~~ ~ r- ~~~ -~~ t-~ ~~~~~~~~~~~~~~~~~~~~~~~~



156 AN INTRODUCT ION TO THE THEORY OF L INEAR SYSTEMS

= — S(w)c os wt dw (7. 1 1$~

By subs t i tu t ing  (7. 1 32) i rmt I l  ( 7 . 13 $ )  we have

A ~~~ Sill (w - W5 j  ~l~ / 2
o (,)  = — I cos wt dw ( 7 .114 )

i rJ  w - w 11
L)0~~~~~ L)

tf we impose the condition

~~~~~~
- 

~ ir ( 7 . I i ~ )

then

sin (w — wo)T o/ 2
w —

is positive over the integration irmterva l . Timerefore

.4 sin(w- w0) T0/ 20(1)1 ~ 
— I Icoswtl  dw ~ o ( 0)  (7 . I$ ( (
i rj  w- w 0

where

o(0) = -

~~~ [ sin (~~~ w0) T0/ 2 
dw = 2AJ 5Inx d ( 7 . l $ 7 )

(1

x (w - w0)T 0/ 2 : = ~ wT~/ 2 ( 7 . l $ ~~

Front (7. t 04) and condition (7. 116) the noise intensity at the fi l ter  ou tput
Is

r — I
~ 2 

~~ j S~(w) dw
J wo-~ w

2S,I
= — sw ( 7 . I $ ~) )

IT

~~~~~~~
-.-

-

~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -: -~~~~~~.. 
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Th er ef ore tI m e si gn al- t o -r!tIi se ratio for simp le filtering is

02(0 ) 2A2 X2
p = — — -  = (7 .140)

~2 lT S,I~~w

where

.k~ fP smx d x  (7.141)

fllc L’neIg\ ‘S the re c tangula r  pulse is . front (7 . 122) .

1 T0 / 2  T0I = / s 2 ( t)d t  = ,4 2 ._.. (7. 142)
— -T 0 / 2  —

w h i c h ,  when subst i tu ted into the signal-to-noise formula (7.140), gives

4EX 2 2EX 2
p = = ( 7 . 14 3 )irT0 S,,~~w irvS~

I i r n u r I g  t ime rat io p /p 0 where p 0 is ti me signal-to-noise ratio of the matched
filter (c f. eq. (7. 127) ] .we  have

p .‘x 2
— = - ——— (7 . i44 )
P 0 110

i l l e  ra t io  P / P ()  depends on the para meter v to the extent  that the ratio is a
IlIJXi!I1UIII for

-
~~ 2.1 5 (7 .145)

or

w 4~-~ (7.146)

l I ’ i ~

(7. 147 )
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i. e.. p is approx inmately one decibel less than p0. Hence , the matched filter gives
a large r signal to noise ratio because its trans fer function fits the signal spectrum
front the stand point of both its bandwidth and shape (amplitude).

LI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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8

Quantiz ed Systems -Perturbation
Theory and State Transitions

8.1 INTRODUCTION

As an introduction to some of the methods of statistical analysis we will exp l om e
in a preliminary fashion some of the probabilistic methods of quantum t imeo my ,
particularly as the theory describes the probability of state transitions resu lti img
from small energy perturbations. The theory has experienced a high degree of
success in physics and chemistry , and is introduced here primarily as a method
for analys is. In the quantum picture the system is analyzed on time basis of its
energy content , which is quantized. Associated with each of the quantized
energy levels are the system states. The input to the system represents a change
(perturbation) in the total energy of the system. This change results in time
system transitioning to various different allowable energy states. The probability
of a (state) transition occurring is directly related to the perturbing energy and
the system ’s allowable quant iLed energy levels.

There exists , however , a fundanmental diffe rence , between the quantized
system and the linear system. This difference arises from the theoretical con-
cepts governing the respective theories and is manifested in the system dynamic

159
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equations. It was seen earlier that time dynanmic state equation for the linear
systenm is

= Aix > + Blu>

whici m is an outgrowth of the idea of ordered input-output pairs and techni q ues
to attach a (state) “label” to the pairs. The “motion ” of a quantized system is
governed by the Schrodinger equation

= Hix >

which , as will be seen below , is one of the fundamental post ul ates of q uan tum
theory .

8.2 FUNDAMENTAL POSTULATES OF QUANTUM THEORY

The intended goal here is to apply time methods of quantum theory to achieve
simple rules in describing systenm state transitions . In describing these methods
we first examine those fundamental postulates 1 which inmportant l y serve as the
basis for time theory . They are as follows :

POSTULATE A. To every measurable , real quan ti~ ’ 1-’ there is associated
an (Herrnit ian) operator F called an observable.

For a 1-lermitian operator to be an observable it is required that the eigen-
vectors associated with the operator span the entire space . Thus , the eigenvectors
ix1> of the observable can serve as a complete set of orthonormaI base vectors
where

<x , I x f > =

Any finite state vector ix> in this space can be described in ter imms of the eigen-
vectors :

lx) = ~~ c1ix 1) (8. 1)

where the c1 are the expansion coefficients.

1. See , for example , Grossman , L . M., Thermodynamics and Statistical Mcchanrc~. McGraw-
.‘ 11111, New York. 1969 . pp. 77-87.

U .. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
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POSTULATE B. The only possible values of a measurement of the mea-
surabk ’ quantity F are the eigen values X of the operator F.

Fronm Postulate A the lx i> are the eigenvectors of F; i.e.,

Fix 1> = X j I x1 ) (8.2)

The scalar product formed by (8.1) and the ith eigenvector identifie s the ith
coefficient c~ as

c, = (x~lx > (8.3)

The probability that the ei genvalue X1 of F will be measured in state lx ) is c7c1,
where c i x ~> is the projection of Ix > along the normalized basis eigenvector I x~) .

POSTULATE C. If a system is in a state represented by the vector ix> tire
expected mean value resulting f r om a number of measurements of the measura-
ble quan tity F , whose observable is F , is

(F > 
( x i F l x >  

(8.4)(xi x>

where the double bracket ( )  enclosing a single quantity denotes the expectation
or mean value .

If the state vector lx> is normalized clearly (8.4) becomes

(F > = (x lF i x > (8.5)

Subs t i tu t ing  (8.1) into (8.5) yields for the expectation value

(F > = ~~~ (c7c ,)F 1

= ~~ (c ’c1)A~ 
(8 .6)

where the A, are the eigenvalues of F . Interpreting the coeffIcients c, of each A,
as a “weighting ” factor or the probability of measuring the eigenvalue A1 we can
write

(F > = �~~Pi A1 (8.7)

~~~~~~~~~~~~~~~~~~~ 
_ _
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where

* 2= =

In (8.7) we require t ime normalizati on

2 lc 1I 2 I (8.7a)

for

c, ~~ 0 (8.7b)

Front (8.3) it is seen that  the probab ility F ’~ is the square of the absolute value of
the scalar product of the state vector ix > and the ith eigenvector; i .e.,

P, = ic1l 2 I (x , I x>I 2

If the system is in a state represented by one of the eigenvectors of the observ-
able F then

= l(x , lx 1>I 2 = (8 .8)

Hence the measure.i value of an observable F possesses a well defined probability
of one or zero if the state of the system is an eigenvector of F. In this case all
probabilities are zero except the one measuring the occu rrence of the eigenva lue
A , which is unity.

In cons idering two measurable quantities. say F and G. it can easily be
shown that they can be measured simultaneously only if t lmeir associated resoec-
t ive operators F and G commute ; i.e.,

f F G - G F J  = 0

(F ,G] = 0

This is to say that the vector repre senting the system state must be an eigen-
vector of both observables. The quantit ies corresponding to the two operators
can therefo re be aribtra rily well defined in time same state. If the operators
corresponding to the two physical quantit ies F and G do not commute , there
will be a dispersion ~.F and LXG inherent in their measurement. This dispersion is
given by the inequality specified by the Heisenberg uncertainty princip le:

~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~ --- - - -- -. 
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where

C

POSTULATE D. The dynamical behavior of the system represented by
the state vector lx > is determined by the Schrodinger equation

j h-ã~
H x)  = Hix > (8.9)

where h = h/2n = 1 .05 X lO 27 erg sec and H is the operator (observable ) corre-
sponding to the classical Hamiltonian of the system.

The relationship between measurable quantities and classical concepts can
be readily established from the time development of the expectation value (F > .
In view of (8.9) we particularly want to explore the time dependency of j’h(F>.
From equation (8.5)

jh (x I F lx >

Using the product rule for differentiation and the properties of the complex
scalar product we have

= (x l F j h -~~Ix ) + j h (xj~~~ Ix > - J h f ( x l F l x >

which becomes upon using the operator relationship of (8.9)

jh~~-(x iF Ix > = ( x l F l x >  - (x l H F l x >  + /h (x I -~~~ix >

= (xlFH - H F lx>  + /h (x l Ix ) ( 8 . 1 0 )

If the operator dF / dt is defined as

dF _ dF( x l’~— l x>

then equation (8.10) yields the dynamical law in operator fomi :

= —
~~- [F , GI + ~ (8 .11)

Equation (8.11) is also referred to as the l-Ieisenberg equation of motion.

LI 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ _1~~~~~~~~~~~~~~~
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8.3 ENERGY PICTURE

Clearly fronm (8.10) and (8.11) if the operators F and H commute . aimd F does
not clmange with tinme , then the mean value of the measurable quantity I-’ remains
constant ; i.e.. d (F >/ dt = 0. It  follows that, for this situation , the probabili ty c1~

2
of measuring eigenvalue A1 is also independent of time. Hence the observable is a
conserved quanti ty.  Of particular interest among conserved quanti t ies is time
associated energy . If the observable H corre sponding to the classical Hanmiltonian
of the system is not a function of time (dHfd t  = 0), a,md since H comm utes with
itself , the mean or average value of the energy is constant; i.e.,

Thus for an isolated system where aH/at 0 equation (8.11) is in concert with
the law of conservation of energy .

For conse rvative systems general solutions to the Schrodinger equation
can be ob tained in a straight forward manner.  These solution s express the state
vec tor in terms of the (energy) eigenvectors of H . This can be seen by consider-
ing the following. From Postulate D the equation of motion is concisely

/h -~~Ix > = H ix>

Since t does not appear explicitly in the differential equation we can look for
solutions of the form

= f ( t ) ix)

i.e.. a fornm consisting of the product of a t ime-dependent part and a nontime-
dependent part. The corresponding eigenvalue problem is formulated as

HI;> = A1I ;)

= E, ix 1 > (8.12)

where the observable H , which is the measurable energy , is independent of time.
The F, represent the energy eigenva lucs and Ix1 > the corresponding energy elgen-
vectors. Since the eigenvectors fornm a conmp lete orthonormal set the vector ix ( t ) >
in the state space can be expanded as

ix(t)> = 2 a 1 (t) ix 1 > (8.13)

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ . ~~-- — ,.~~~~~~ .- ~~~~
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where the coefficients a 1(t) are time dependent. Substituting ( 8 . 1 3 )  into (8.9)

gives

0 (8.14)

which , in view of (8. I 2), becomes

21 [ a i(t)L ’i + - ~-~~-a i (t) ] ix i > = 0 ( 8 . 1 5 )

The complex scalar product formed by (8.15) and the reciprocal vector (xk l
yields for the kth coefficient the first-order differential equation

l i d
ak (t) Ek + — -

~7~ak (t) = 0

for which the solution is

aj ~t)  = eke j1~ t,’t1 (8 . 16)

The coefficient cj,  is a constant. Thus for an isolated system where the Hanmi l-
tonian is independent of time the solution to the dynamical equation (8.9) is of
the form

x(t) > = ~~~c j e ~~
Ej t / th ix j > (8. 17)

Tinme enters into the solution of (8.9) strictly as a phase factor.  The
coefficients c1 are constants. the x1> are eigenvectors of the energy operator , and

the I-~ are the corresponding energy eigenva lues . From (8.7) and (8.16) time
probability of nmeasuri ng the kth energy eigenvalue Ek ~5

ak ak = = const. (8.18)

I Ien ~ ~ or Iso lated ‘~~ ~I et1l s all probabilities are constant in time . Orml y t Ime rela-
I I ’,L ; lI.I~t’~ ~I time component states change . If the system is in a given emmergy
. I l’t ’ I I ~ t I t L ’ a t  tul le t I t  will remain in that  state corresponding to the same energy

lI~ a i I I e  I~~I .ill t ime ) This is t rue for the values of any other observables

I lip It

U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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which comimmute with H. Thus states represented by solutions of the fo rnm of
(8.17) are said to be stationar y states . However , the name is somewhat mislead-
ing . It is not the state (8.17) that is independent of time , but the probability
anmplitude (8.18).

We also see from (8.17) that a stationary state has a well defined energy .
F, is a definite energy value in addition to being the expectation value. A
determination of the energy of a systenm in a stationa ry state y ields a particular
value of E and only that value . The time-energy uncertainty relation of Postulate
C, where

z~E& > h

implies that a state with a precise energy (g.E = 0) is possible only if one has
unlimited time to nmeasure same. This is characteristic of stationary states in view
of the constancy of the prob ability amplitude.

8.4 TIME-DEPENDENT PERTURBATIONS; STATE TRANSITIONS

In the discussions thus far we have examined mathematical problems that can be
solved exactl y. In practice problems that fit the theory and can be solved exactly
are rare. One must therefore resort to methods of approximation. A powerful
nmethc .~ of approximation is found in perturbation theory . The Hamiltonian is
fo rmed in two parts: one is large and characterizes the system for which the
Schrodinger equation can be solved exactly, the other is small and acts as a
perturbation. There are many physical problems of this kind. For example ,
systems which exert weak forces on one another , or time-varying external forces
acting on a system. The system reactions can be described in terms of the
unperturbed states of nonintera cting systems for which exact solutions can be
found. This technique suggests transitions among states. Thus perturbation
theory provides a connection between the observables of a system and its
stationa ry states.

In the previous section we discussed isolated systems for which the Hamil-
tonian was time invariant. The system state as a function of time was shown to
be

r -jE t/hix(t)> = ‘.—~c1e lx ,>

The anmplitude of the kth state is

ak (t )  = (x k j x (t) > = ck e~~~~
t

- - ~~~~~~~~~~~~~~~ t~~~~~~~~~~~:t~~L ” 
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tron i which it follows that

* — 2ak ak — I = const .

If a tinme varying force acts upon the system the situation is changed. The
Hamilto mmian now contains a time dependent as well as a time invariant  part. The
coefficients a1 depend upon time in am plitude as well as phase. Consequently, it
is possible t lmat certain states will grow and/or decay with time. A system can
change its character under the influence of an external force; the force produces
t ransitions from x1> to ix ). This imp lies that the system energy changes fronm Ej
to E, ; the difference being the work done on the system by the external force.

Describing an external force as an additional time-dependent term in the
l-lami ltonian is . at best. only an approximation. For purposes of this discussion
we will consider only the first-order term of perturbation theory . Also , we will
assume that the tinme-dependent perturbation is weak and comes about as a
result of the systenm interacting with another system. Thus the Hamiltonian can
be appro x imated as

H = H° + V(t) (8.19)

where H0 is the Flami ltonian of the unperturbed system and V(t) is the small
interaction or perturbat ion term. The superscript will be used to identify quan-
tities associated with the unperturbed system. Further , we assu mmme the eigen-
vecto rs x1

0> of H° are known and satisfy the relation

H° ix ,°> = E,0 lx ,°> (8.20)

wh ere t he correspo nd ing en ergy ei genv alue s Ej° are discrete. If the initial state at
ti m e tO is expa mmded in terms of the unperturbed eigenstates we have from (8 . 17)

i x(t0)) = ~~~cj e
h1

~1 t0h hh ix j
0 >

In the absence of any disturbance , we have for all time

=

‘I;

- 1L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
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However. ut  the  presence ol V(t) (8. 17) is mu longer the c l I r i c c i  solut ion t o the
Schrodinger c quat i om m . To obtain the proper solution we must  expand Ix ( t ) )  at
ever y ins tant  of t ime with the ampli tude coef l lcie mlt s c1 dep ei md ing omt t u l l e :

I x (t) ) = ~~ ~.( ~~~~~ Ix 1~) ( 8.21)

The probabi l i ty  am plitude of finding time system in the kt lm unper turbe d state is

ck ( t)  = (4 ix ( t ) > e ~~~~~ (8 . 22)

To readily determine the manner in which state transitions occur we ex-
anmine time time dependency of c~ . Substi tuting (8.21) into the equation of
motion

j h ~~ ix> = H ix )  = (H ° + V) Ix >

gives

J im ~~~~ ~~~~~~ 
- ~ Ej0cj ( t) ) I x j0> e 1~i t

~ = ~~~c t ( t) H I x 1
rTh1~~

Forming the scalar product of the above with (xk°i results in

(/h 

d ck (t )  
+ E~ ck (t) )  

-j E ~ tJ h 
~~ c (t) (x ~~iH

0 i x ) e I u 1
~~

+ ~~cj (t ) (x ~ IV ix j0>e~~ 1 th

L Since time Ix~ > form an orthonornm al set Eq. (8.20) gives

(x~ I Hi x 1
0> = E~

0(x~ ix 1
0) = 

~i~~ki

which reduces (8.23) to

/ h~~~ck ( t )  ~~cj(t) ( x V Ix I
0)e~~~t t

~

(~~~~ 2 4 )

11L ~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :.~~~~~~~
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svIi~re

t A i  = (x~~IV - x 1
0) ~~.25)

t~qua l ioI I  ( . 2 4)  is a syste m of s imul taneous  l inear  lIOIIIOgCneO US d I t f e r en t l a l
C( l U J l l I ~IIs . I t  C \ p I C S S C S  the equat i on  of motion in t e rms  of t h e  eIi ~cII vectors Of

the u n p e r t u r b e d  I l an l i l t o l l ia n  H 11 . In mat r ix  form ( 8 . 2 4 )  call be wr i t t en  as.

Cl ~l I 
1, - j(L-i~- E1

0)t/h

/ 11 
~7 e’ = I ., 1e 1 (E 2 ) /  

~22 . . .  ( 2

- H

As yet no approximations have been made in arriving at (8.24). It is in the
so lutio n of timis complicated set of equations tha t  approximations are invoked.
The solutions to (8 .24 )  depend hig hly on the initial conditions. For simp licity it
is assumed that  at the initial time t 0 — 0 0  the system is definitely in one of the
stationary states of the un perturb ed 1-lami ltomm ian , say the Ith state. We want to
examine the probabi l i ty  (If the system t r a n s i t i o n i n g  I I I  state k . We assume tha t
H tm1 has discrete ener ~~’ levels. Thus t Im e ini t ial  conditions for the tc~ne-de pendent
probabi l i ty  amp li tudes become

= I C~-( ~~°°) = 0 (8 .26)

We beg in our solution to (8.24) throug h successive approxi l l ia t ionS.  Subs t i t u t i ng
in (8 .24) the ini t ia l  values of the coeffIcients c1 we have at t ime t~ = — 00

d -
~~~~~ F 0 /5j h -~ - c k ( t )  = j k  1

E quat ion ( 8 2 7 )  is n m l v  valid for t such t l la t

~~ I~~ ( t )  1 (k ~~i)

We aCaI f l  make use I I I  l Ime ‘ ( I t l a l  cond it ions  (8 .26)  to in tegra te  (8 .27 ):

I I ? ~~ - j- I I - ‘‘ IC k ( t )  - -
~ I~~~~~I ’ k di (k ~~i) (8 .28)

- - ~~~~~~~~~~~~~~~~~~ J
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For sm mma ll pe r tu rba t ions ti m e ~‘k (t )  m a y  re m ain small throughout.  After time per-
t u rb a tio n s h ave stopped t Im e syst em sett les dow n to con sta n t va l ues of c~
evaluated at t +~~:

ck (t)  = - f J vkie I ( l k ) ’/ dt (8.29)

From for immula (8.29) it is seen that a system influenced by a time-dependent
perturbation makes transitions to other energy eigenstates of H 0. The quantity
i ck(°-°)i2 de fines the transition probability from state ito k. ~t is proportional to
time square of the absolute value of the Fourier component of the perturbation
mml atri x element VkI ,  evaluated at the transition f r equency wkI ;  i c . .

ck (°°) i 2 = _
~~~j V ki e~~~

kj t dt~

where Wk I is deduced from the relation

= 2irf

VO L O- k
h

If the system is initially in the hi gher energy state k the transit ion prob-
abil ity to the l owe r state i is , from (8.29),

c1(°°) = - ‘~~J J ’ ~k ~~I~ ik t dt

It can be shown that V is a Hermitian perturbation operator. and that  Wkj =

Wjk . Thus it readily follows that

c.(°° ) = -c (c~) (8.30)

The two transition probabilit ies are equal.  Property (8.30) is the c o m mdit ion for
detailed balancing. The energy difference F = imwk, is transferred to the radia t ion
field of the systen m .

LI. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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8.5 CONSTANT PERTURBATION

As a mat t e r  of practical imt teres t we consider the case where V is constant or
varies slowl y over the Period I/ wk I .  The system is in an initial unperturbed
eigenstat e 1x 1

0) at ti me to =0 and then subjected to a weak perturbat ion which
persists at some ,iear constant value. In keep ing with out previous discussion the
t i me development of a system with Han m iltonian II = H~ + V can be convenientl y
descriL~d in term ims of transit ions between eigenst ates of the ummperturbed Hamil-
tonian H 0 . The approximate equations (8.27) apply:

- d
= VkI e  kI

Treating V as a constant and specifying the initial and final discrete states as i
and k . respectivel y, integration of (8 .27) gives

(x & I Vi x >  -
= 1

0 
( 1 — e~L~Iki o )

-

= 
Vk/ (1 - e~~ ki t ) (8.3 1)

where

ck(0 ) = 0, c (0) = 1 , k ~�‘ i

The probability that the system, in the initial state i at time to = 0, will be in the
final unperturbed ei genstate k (k ~ 1) at time t is

4 I VkI I 2 f w k l t\
I C k ( t ) 1 2 = 

2 sin 2 
(—

~~
—-- (8.32)

(E1~
t~-~~,0) \ - /

}.quation (8.32) is illustrated graphica lly in Figure 8.1. It is a periodic function
o f t  with a period equal to 1r/ .~.1k1- and a peak at Wki = 0. The expression is valid
only as long as c~( r )  can be approximated as c1 ( t)  I . dur ing which time tIme
transit ion probability to states where * i:/~ remains small for weak perturba-
tions. The probabil i ty of finding the system in state k is small tinless the energy
of the k t h  state is close to the energy of the init ial  state . However , t rans i t ions  to

— 

‘ :~~ - -.~~. .. - . ,
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Figure 8.1

states where E1~ E~
0 have an i m p o r t a n t  p roper ty  - W h I C h  I ~ / e q u a t l l ’ I I

(8.32) can be approximated as

~
k ( t ) J  ±~~~‘~ . 2 ~ 2 (8 ~~~

Thus the transi t ion probability to the kth unper turbed eigenst ate Inc r e ases
quadratically with time . This has special importance when the sta tes  in time
neighborhood of the initial energy are very closel y space d a n d con st i t u te a n ear
continuum.

It is no t physical ly possible to measure Ick~
2 for a sing le value of k. The

classical measurement is of the total probability that the system nmade a transi-
tion from an initial to a final state. We define the total transition probabil i ty to
all possible final states as

Transition probability ~~

where the summation extends ove r all final states under consideration. For a
quasi-continuum of energy states per uni t energy level we introduce the density
of final unperturbed states denoted by p(E). The quantity p( E)dE measures time
number of final states in the interval dE containing energy E. The total transi-
ti on probabil i ty into these states is detern mined by mult i p l ying (8.32) by
p(Ek°)dE,2 and integrating with respect to dEk° :

I — COsWk , t
f i c k ( t )1 2 p (E k

O )dE k
0 = 2f [ Vkii 2 

0 0 2  p(E ~ )d Ej~ (8.34)

where

= i ( x ~ IVix 1
0) I

~~~~~~~~~~~~~~~

r

~~~~~

_
- •: ~~~~ ~~~~ , .
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The time rate of clmange of the total transition probabi lity, w. is

d 2 sin Wkj t
= .

~7rCk (~) l 2 P (Ek
0 ) dEl~ 

—~-f i VkI p~E1~)d F1~ (8.35)

In analyzing (8.35) Vk/ and p are reasonably constant over a small energy
range ~E~

0 near L’,0 . However, sin wki t/ .ok~ oscillates rapidl y in this same energy
interval for all t satisf ying the relation

t ~~
‘ h/~ E ° (8.36)

and has a pronounced peak at E~ = F,
0 . Clearly those transitions which tend to

conserve the unperturbed energy are dominant. Also ~~~~~~ is usually comparable
to E-0 Thus h/~E,° is a very short tinme. Hence there is a large range of t where
(8.36) is fulfilled yet the initial state i is not appreciably depleted. During this
time (8.35) can be approximated as

N) = C k (t) I 2 P (E ,~)dEk = 
~~ iVkf IP(E k) f  dwkj  (8.37)

Under the conditions stated the transition probabilit y per unit time become s

= L~j~ 1j P~E’~~ (8.38)

Equation (8.38) shows a constant rate of transition. This result comes about
because we summed over transitio ns which conserve the unperturbed energy
(E~ = F,0 ) and transitions that violat e this conservation. From (8.33) it is seen
that the transition probabilitie s of the former type increase quadratical ly with
time , whereas from (8.32) it is seen that transitio ns of the latter ty pe are
periodic. The result is a compromise between these two and the transition rate is
constant. Result (8 .38) has been termed by Fermi as the golden rule of time-
dependent perturbation theory.

8.6 EXPONENTIAL DECAY

Our discussions on perturbat ion theory was centered around the approxi~tia te
solutions to equations (8.24):

/ hf c k ( t )  = �I cj (t)Vkj e ~~~u t

Li _:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
--~~~~~~~~~~~~~ . -~~~-- - ..- ,
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From these equations it was seen that if ~kI ~ 0 transitions from an initial state
to various available final states occur. The probabili ty that the system will make
a transition in tinme interval between t and t + dt is equal to wilt. By the condi-
tion for detailed balancing, (8.30), these final states contribute to the probabil-
ity atnp litudes of the initial states through a feedback process. A.s the a m p litudes
of the final states grow , they do so at the expense of the initial states , since
probab il ity is conserved. Because of the different frequencies Wkj of time feed-
back process the contributions made by the amplitudes c~ to amplitudes c, are
all of different phases. Thus if there are many available states k , forming a
near-continuum , the contributions made by these states tend to cancel. This
destructive interference in the probability amplitude is interpreted as a gradual
(exponential) dep letion of the initial state.

I t is inferred above that the probability of finding the system at time t still
in the initial state is proportional to exp(—wt). This is the exponential decay law.
To derive the exponential decay law we no longer consider c (t)  on the right-
hand side in (8,24) as a constant. However , in our approximation we will con-
tinue to neglect all other contributions to the change in ck ( t) .  Equation (8.24)
becomes

J hf c k ( t )  = Vkj cj ( t ’)e 1~ ki t k * j

Ck( t )  = — -f Vkij  c1(t ’) e ”°ki t dt ’ (8.39) 
—

where ck (O) 0 for k * i. The prime identifies t with ck . However , by reciprocal
manipulation of (8.24) it can be shown that the equation of motion for c, (t)  is
rigorously

j h —~--c , (t ) = ~~.Vki c k ( t) e ~~
hik t + V,1 c1(t) (8.40)dt 

-

Substituting (8.39) into (8.40) g ives

= - -
~~~ 2 l V kj l 2f ’ cj (t ’) e 10) ki(t~~

t) dt - -~ Vj 1 c1 (t) (8.41)

Assuming that the pertinent final states are in a mmear - continu um with a density

JA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _
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of states p(E~~) the sum can be replaced by an integral extending over all
possible transition frequencies. Equation (8.41) becomes

~~ c1(t) = —~~ - f Vkil 2P (E~ )d J k ij ci(t ’)e b0~) ki~~~
t) dt ’ - -j~

- Vüc~(t)  (8.42)

Equation (8.42) is a differential equation of the Volterra type. It can be approxi-
nmated by the simple equation 1

1- c j ( t )  = (-~ 
- L~L’0)c (r) (8 .43)

- 
- where ~E~P is the shift of the unperturbed energy level ~~ due to second-order

perturbation. 2 With c (0) = 1 equation (8.43) yields

c~(t) = exp (- 
~ 

- L~~o) (8 .44)

which describes the exponential decay .

We next examine the probability that the system has decayed into state k.
Substituting (8.44) into (8.39) and integrat ing:

Ck(t )  = - f - Vki j exp [_

~f 
E 0 +~ E 0 - E,~? — / h - ~~

’
-- t ’] dt ’

= 

- exp (_ h
~~t)exp I_ k (~

0 +
~~

0 _ E
~

)t]

E1~ - (E 0 +~~E~,
0) +

The probability Ick l 2 that the system has decayed into state k becomes

/ 1~’ \ (E.° +~ E P -E ~ \
1 — 2 exp~-~~t) cos~ 

1 

~~ 
)t + exp(— 1’t)

ICk ~
2 = IVkj I 2 

2 
(8.45)

-

~~ 
~~~~~~~~~~~~~~~~~~

t .  See V. F. Weisskopf and E. P. Wigner . Z. Physik , 63 , 54 (1930).
2. The reade r is rem in ded that ou r disc ussion on pert u rb a tion addressed onty first-order

terms. A n exception is made in the derivatio n of eq uation (8.43) .

S
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where F = hw. For t long com pared to the state lifetime I/F’ the transi tion
probability is approximated as

IC k l 2 = 2 
(8.46)

( E E ° —~~L °) 2 +

E quation (8.46) is a bell-shaped curve . It has a pronounc ed peak at those final
state energy levels L’~ equal to + ~E .  The width of the curve is equal to
hw.

IALI 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Appendix A

DIRAC DE LTA FUNCTI ONS

The delta function ~~ 
— a) is a mathematically improper function havin g the

following pioperties (in one dimension):

= 0 for ~ a ( A l )

J ~~ 
— a) d ~ = 1 if region of integration (A .2)

—= includes ~ = a

J ~ — a) = 0 if region of integration (A.3)
does not include ~ = a

177
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Higher order delta functions are defined as the derivative of~ (~ — a ) :

d ’~~(~ - a)
= 

dt ’~ 
(A.4)

The delta function of another function can be transformed according to the rule

= ~~—~o) (A.5)

-
‘

where JI~o) 0. For an ar ibtra ry function f(s) the sifting property of delta
functions provides for the integral equations

f f(~)~~ 
- a)d ~ = f(a)

f f(~) ( ~ -a) d ~ = ( - l ) ~f ~(a)

It is difficult to physically imagine the delta function or the un it impulse
as it is also referred-to. Qualitatively, it can be thought of as a small pulse of high
magnitude and infinitesimall y small duration (see Fig. A- i ).  We require that as
the peak of the curve gets higher , the width gets narrowe r in such a way that the
area under the curve remains constant (unity). Thus the uni t impulse b(t) can be
regarded the limit as -+0 of the pulse p ( t )  having width ~~ and height l /~~ .

6(t)

* 

j

~~~~~~~~~~~~~~~~~~~P(s)

Figure A .1 Unit Impulse.

LI. - :k ;. ~~~~~~~~~:
’
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App endix B

RESOLUTION OF CONTINUOUS-TIME SIGNALS
INTO UNIT IMPULSES

An arbitra ry signal u(t) can be approximated in any finite ti~ne interval
— T ~~ t ~~ T by a finite number of unit pulses of width Z~~ occurring at times
t = k~, where k = ±1 , ±2 , . . . ,  ±A = T/ ~~ . Fig. B-I illustrates the idea. Since the
height of the unit pulse is i/ ~~ , the pulse at t = kL~ is multip lied by u(kL~~) z~
thereby resulting in the amp litude u(t). The approx inmation of u(t) can be
written as

I ,  N
u(t) = u(k ~~ )~~~p ( t - k ~~ ) ( B . l )

k=-N

= lim u(kL~~)~~ p(t  — k~~ ) (B.2)

N—.= ’.

where p (t )  is defined in Appendix A. In the limit as z~ —~ 0 and N -÷ °° the pulses
become impulses and the summation becomes an integral. Thus the approxima-
tion becomes exact. We have

c-T
u( t) = J u(~ )~~(t — ~)d~ (B.3)

-T

over the finite time interval (—T .T) . Ext ermding the integral over the ent i re  time
domain defining u(t) , i.e., letting T- ~ oc,

u(t) = j u (~)~ (t — 
~)d~ (B.4)

Thus , any continuous-time signal u(t) can be resolved into a continuum of unit
pulses. It follows that the response of a linear system to excitation 0 ( t )  can be
readily found if the response to the unit iimmpu l se is known. Hence the unit
impulse response completely cimaracteri zes the system.

1~gI ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
~~~~~~~~~~~~

_
~~~- - 
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_ _

- 
, 

o ,~~ ~~~~ - - - - .. - -

Figure B-i Approxi nmatiofl of u(t)  by unit mmputs es.

App endix C

DISC RETE-TIME STATE EQUATIONS

From (2.1)  the standard forum of the nth order difference equation can be
written as

(C.l)

(a 0 + a t A ’ + . ..  + a~A ’m)v ( k )  = (b 1A
1 + . . .  + b5 A~~) u(k )  (C .2)

where it is the linear advance operator defined for any interger v as

A~f (k)  = f(k + v) (C.3)

Introducing the variable v(k)  where

(a 0 + a 1A~ + . . .  a~A ’m) v ( k )  = u(k)  (C.4)

and

(b 1 A~ + b 2K
2 + ,,. +b 5 A~~) v(k)  = .m ’(k) (C S)

U ~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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equation (C.2) gives

v(k ) = ~!.. [ u ( k) - a ~v(k f l )  - a0 1v(k - n + l )  ... - a 1 v(k 1) 1  (C.6)

Spe cifyi mmg the elenments of x(k) as

x1(k) = v ( k- n)

x2 (k) = v(k n + l )

x,1(k) = v(k — I )  (C .7)

we can writ e

x1(k +1) = x2(k)

x2(k+l) = x3(k)

x0 t (k+l) = x0(k)

x0(k+l) = J— [ u (k) a0 x 1(k) . . . - a1x,~(k)] (C.8)

In matrix fornm (C.8) becomes

x ( k + l)  = Ax(k) + Bu(k) (C.9)

where

0 I 0 . . .  0 0

0 0  1 . . .  0 0
B =  ( C . 10 )

~~~~~~~~~~~~~~~~~~~~~~From (C S) we have

.m ’( k)  = 6 1 v(k-  I )  + b 2 v(k 2)  + . . .  + b5 v(k - 5) ( C I I )

~~~~~_ • ~~~~~~~~=~~~~~4 •~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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S u b s t i t u t i n g  (C.7) in to  ( ( I I )  gives

.t~(~~ ) = b 1 x~ ( k)  + b 2 x 0 1(k)  + . . .  + b5 x,,~ 1. 5 (k)  (C.l2)

or , in ma tr ix  forum ,

y ( k )  = Cx(k) + Du(k) ( C . 13 )

where

C = - ,~ - -  0 = 0 (C .14)

Matr ices ((‘ .10) and (C. 14 ar e r I s it  uni que. They are omme of a variety of ways to
rep resent (C .9) and ((‘ .1 ~ i .

A ppendix D -

TRANSFORMS 
-

Listed below are trans for~~s of some of the imiore commonl y used mathemati-
cal functions:

~~[ f (k) j  = 1 ( z)  = ~~ f(k) z k k ~ 0k=0

= 
I - az~~ 

H> al

= 
I 

zj  > i
-

~-.[ co s wkJ = 
1 > 1

I — 2z cos w -f z -

z sin w-- . I s m n w k l  = 
2 

-
~~, > I

i — 2z cos c~~+ z
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= (_Z~~~.)~F(Z)

= 
Z IzI > l

(I — 2— 1 )2

z~~(l —
~~[k 2 J =

(1 —

• Z1k ’l = — log( l—z ~~) k~~ 1, IzI > l

[~iJ = e~’2 zi >

(f(k + 1)] = z [ F(z) - f(O)]

? If(k - m)J = z mF(z)

~ Iakf(k)J = F(a~~z)

transforms involving difference operators can be written according to
the rule

2 (Af (k)J  = (z — 1 ) F ( z )  — zf(O)

= (1—z ~~)F(z)

where ~f(k) is the forward difference operator defined as

Af(k) = f (k+l) - f(k)

and —~f(k) is the backward difference operator defined as

-~f(k) 
= f(k) - f(k - 1)

The inversion of the 2 transform can be accomplished in a variety of

~~ ~~~~~~~~~~~~~~~~ ~~~~~~~ i’~ L~~ ~~~~~
=
. ~~~~~
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ways. Listed below are a few elementary transform terms useful in expansion by
partial fractions:

Time sequence
F~z)

1. F(z)converges lzl>a 2. F(z)converges lzl<a

— k 1
z — a  k~~1 a k~ O

z k k 1  _ k k 1
(z—a ) 2 

a k~~1 a k~ O

z(z+a)  
k2a~~ —k 2 k 1

(z — a)3 Ik~ 1 a 1k ~

z(z 2 + 4az+a2 ) 
k3a1’~~ -k 3a1’~(z — a)4 k~ i k~ O

Appendix E

ANALOGOUS QUANTITIES OF CONTINUOUS-TIME
AND DISCRETE-TIME SYSTEMS

QUANTITY CONT.-TIME SYSTEM DISCRETE-TIME SYSTEM

Fundamental 
~~t) = $(k ) = A~’

~t [matrix 4~~ (st — A) 1 4(z) = (I -

Impulse response H(t) = c~(t)B + D~(t) H(k) = C4’(k - l)B (k ~ I)
matnx H(k) = D (k = 0)

H(s) C4’(s)B + D H(z) = Cz~~4i(z)B + D

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ i~~~
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Appendix F

STOCHASTIC PROCESSES

• Assume that a given experiment is performed on a system in which outcomes ~
are measured (see Figure F.I). Let the outcomes ~ form the space S. Associated
with S are subsets cailed events and the probabilities of these events. To every
outcome ~ we can assign the time function u(3~,t). The set of functions fu(~,t ) } ,
one for each ~~, is called a stochastic process . For a specific outcome ~, the
expression f~(~,t)} is a single time function. For a specific time t1, {u(~,t1)}
depends on ~ and is a random variable. ~u(~ ,t1)} is a number. Where it is
understood that ~ is the random variable of the random process ~u(~,t)} we shall
use the notation u(r) to represent the stochastic process:

{u(~, r)} = ~(t) (F. l)

The notation u is used to distinguish a sample func tion of a random process
from the function u established in Chapter 1.

By repeating the experiment n times we obtain n sample functions as
shown in Figure F.l. For a specific instant of time t, we observe the values ~
and denote this total number of trials as nt(a). Accordingly, we establish the
distribution function F(a; t) as:

n~(a)F(a;t) —

= P(u(~,t,)~~ a} (F.2)

Figure F.1 Sample function s of a random process.

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ 2~±
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• F(a; t) is the probability of the event (u( ~,t1) ~~a} consisting of all outcomes ~such that at time t, the functions ~(t) do not exceed the value ~ = a. Equation
(F.2) expresses the f irst order distribution of the process ~(t). The density of
F(a;t)is, simply,

aa = f(a;t) (F.3)

Similarly, given two instants of time t~ and t2 where the corresponding
values of ~ are a1 and a~, respectively, we form the joint dis tribution fu nction
F~a1,a2;ti,t2)as follows:

F(a1,a2;t1,t2) P{u(ti)~~ai,u(t2)~~a2) (F.4)

Expression (F.4) is the second order distribution of the process ~(t). The cone-
sponding density is

aF(ai,a2;t1,t2)
aa1aa2 = f(al,a2;tl,t2) (F.5)

Although it is not entirely correct we wiil state that for “practical” pur-
poses a real stochastic process can be statistically determined by its nth order
distribution function 

t~)  =

The nth order density

f(a1,a2,...,afl; t1, t2,...,t~)

• is determined by differentiating with respect to all variables a (I = I n).
The mean value of the process y . (t)  is the expected value E{y . (t)}  of the

random variable:

E{u(t)} = E{u( ~,t)}

= u(t)

f
af(a;t ) da (F.6)

where f(a; t) is the probability density function associated with the value ~ = a,

— ..~~~ . _ 1  ~~~ . _ — ~~~~ ~~ ‘ ...~~~~~~ ,. 
—
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and f(a;t)da is the probability of fmding the value a within a ± da. Therefore , it
- must follow that:

f f(a;t)d a = I

The auto correlation R(t 1, t2) of a process y.(t) is the joint moment of

• {u(~,t1)} and {u *(~ t2)} i.e., of u(t 1) and ~
1’(t2):

R(t1,t2) = E{u(t i) u *(t2)} = u(t l)U *(r2)

= Ru(t l, t2)

= J a1a~ f ( a I ,a 2;t l, t2)d af da2 (F.8)

where * denotes the conjugate. For real processes yj t)  u*(t).
A stochastic process is said to be stationary in the strict sense if its statis-

• tics are independent of a shift in the time origin, i.e., u(t) and u(t + 5) have the
same statistics for all 5. Similarly, u(t) is said to be stationary in the wide sense if
its expected value or mean is a constant and its autocorrelation function depends
only on t 2 — t l:

E{u(t)} = u(t) const. (F.9)

R(t1,t2) = R (t2—t1) = R(~) = E{u(z—~ )u(t)}

= u(t—~ )u(t) (F.lO)

• where it is understood that t establishes a fixed time and ~ varies over the time
• interval of interest.
• The process ~(t) is said to have uncorrelated. independent or orthogonal
• increments if yjt1) and y( t1+i ) is a sequence of uncorrelated. independent or

orthogonal intervals.
• Given two real or complex processes u(r) and !(t) the cross-correlation of
• the two processes is defined as

R~~(ti, t2) = E~u(t i) v *(t2)}

= u(t l) 2 ( t2)  (F.Il)

& ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
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The two processes are said to be orthogonal if

Ru~ tl,t2) = 0 (F.12)

Similarly, the two processes are uncorrelated if their cross-covariance C~ , is
zero , i.e., where

C~~(t i, t2) = R~~(ti,t2) 
— E{u(t 1)} E {v (t2)}

= R~~(t1,t2) — u(t I) ! ( t2)

= 0 (F.13)

• It follows that for two processes to be uncorrelated

R~~(t,,t2) 
= 

~(tI)2(t2 ) (F.l4)

Lastly, the two processes are independent if (~(t 1) . . .. i4~tn) 1 is independent of
[~~t

’i ),. .,i(t~)j for any t1 t,,,t ’1 
A real stationary stochastic process uQ) is said to be ergodic if all of its

• statistics can be determined from a single ~ample function ~~~ t). Since many
• statistical parameters can be expressed as time averages it can be said that ~, (t) is

ergodic if the time averages are equal to the ensemble averages . ic .. if

(u( ~1, t) )  = (u( t) ) = E(u( ~,t)}  = ! f { u( t) }  (F. l  5)

where (u(~ , t)) is the time average of the sample function 
~~~~~~~ 

t) . We Imply in
(F.l5) that the statistics for u(t) are the same for all sample functIons l~R~t) .
Therefore,

= (u( t) >

Below we examine some of the conditions under which (F. IS) holds true
Given a stationary stochastic process u(t)  the limits

‘ a

(u(t)) = lim ~~ f ~~r d r  (F It’ )

=

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~ 

:

~~ ~~~~~



APPENDIXES 189

where T is the interval (—t , t), define the mean and autocorrelation as time
averages. Form the ergodicity theorem every function ~~ t,) in (F.l 6) defines a
number. Thus, (u(t) ) is a random variable. The random variable (y . ( t))  is equal to
the constant E(~ (t)} = y(t) only if its variance is zero. To determine this
variance we form the finite average

= ~~ f
u(t)d t (F.l8)

which has the mean

E{ (u(t)) }  = ~~f
E{u(t)}dt

= 

~ L~~
lt (F.19)

On forming the second moment E{ 1< ~(t) ) l 2 } it can be shown that the variance
o2 of the time average (yf r ) )  is

= if
2t( 

— [R( ~) — 
~~i)I2]d~ (F.20)

= E(l(u(t))12} — Iu(t)12 (F.21)

If (F.20) tends to zero as T— ’ °° then y~t) is ergodic with respect to its mean.
• Thus,

(y ( t ))  = E~u(t)} = u(t)

Using (F.17) it can be shown , in a manner similar to that above, that the
• process u(t — ~) yj t )  is ergodic with respect to its autocorrelation function

R(~) = urn ~j f u (t - ~)u(t)dt (F.22)

= E{u(r—~ )yjt)} yjt —~ ) y j ~t) (F.23)

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -~~~~~~~~~~~~-~~~~ ~~~~~~ ~~~~~~ • • • ..;
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if the limit

1 - [R(r) - R2(~)Jd~ = 0 (F.24)

where

R(r) = E{u(t +~ + r)u( t  + r)u(t + ~) u(t)} (F.25)

• The power spectrum or spectral density of a process u(t) is the Fourier
transform ~~~~ of its autocorrelation function R(~) :

S(c1~) =

= 5 R(~)e~~~ d~ (F.26)

From the inverse transform R(~) can be expressed in terms of S(~ ) as

• R(~) = 
~~~ 

(F.27)

Setting ~ = 0 in (F.27) gives

R(O ) = = E {I u ( t )~
2 } ~ 0 (F.28)

The power spectrum S(~ ,), as a time average (ergodicity) of the process
• u(t), is defined as the limit

S(w) = tim ~~~~~~~~~~~~~~ (F.29)

of the random power

= 
3 f u ( t )e_1t

~td~ (F.30)

For (F .29) to hold true we demand that S(~ ) tend to S(w) and its variance tend
to zero as T—* oo.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :.~~
• •
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